
DESIGN AND ANALYSIS OF PRIVACY POLICIES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Adam Barth

August 2008

c© Copyright by Adam Barth 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(John C. Mitchell) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Dan Boneh)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Rajeev Motwani)

Approved for the University Committee on Graduate Studies.

iii

Acknowledgments

Many thanks are in order. Although some might consider it cliché, I must thank my

parents, Jeffrey and Mary Barth, for motivating me to write this thesis and for their

careful, thoughtful comments about its contents. My advisor, John C. Mitchell, of

course, deserves a great deal of thanks for, without his tutelage, this thesis would

not have come to be. I also want to thank Dan Boneh, who often served as my

second, unofficial advisor (or wartime consul, so to speak), for offering his insight,

good humor, and diplomatic skills. Further, I would be remiss if I did not thank

Anupam Datta, John C. Mitchell, Helen Nissenbaum, Sharada Sundaram, and Justin

Rosenstein, who were all instrumental in the creation of this thesis by co-authoring

the papers in which many of the ideas in this thesis were first published. My reading

committee, John C. Mitchell, Dan Boneh, and Rajeev Motwani, have earned my

thanks for reading this thesis all the way to the end and staking their reputation on the

adequacy of my work. I thank my orals committee, Ron Kasznik, John C. Mitchell,

Dan Boneh, Rajeev Motwani, and Monica Lam, for publicly interrogating me about

my thesis in front of my friends, family, and colleagues so that I might offer my

defense. Additionally, I thank John C. Mitchell, Dan Boneh, and Tim Roughgarden

for examining whether I was qualified to begin writing this thesis. Kathi DiTommaso

deserves thanks for keeping “the checklist” and ensuring that a sufficient number of

check marks appeared on the list every year. Finally, I wish to thank Aaron Bradley,

César Sánchez, and Matteo Slanina for helpful discussions about temporal logic.

iv

Abstract

Organizations, such as hospitals and financial institutions, that use privacy-sensitive

information face the challenge of complying with privacy regulations and their own

privacy policies. These regulations and policies are often written in natural language

(or legalese), making it difficult for information systems to aid in assuring compli-

ance. In this thesis, we propose a formal language for expressing and reasoning about

privacy regulations and policies.

Other researchers have proposed other privacy languages, but these languages

suffer semantic anomalies due to their handling of the “data hierarchy,” the relation

between different attributes about the same individual. We analyze a number of

examples of such anomalies in the Platform for Privacy Preferences and in the En-

terprise Privacy Authorization Language and lay out a set of criteria for evaluating

privacy languages.

We present our language, the Logic of Privacy and Utility, which is based on

Contextual Integrity, a theory of privacy expectations from the literatures on law

and public policy. Our language formalizes a portion of Contextual Integrity as a

concurrent game structure of communicating agents. We then use a fragment of the

Alternating-time Temporal Logic of this model as our privacy language and identify

specific syntactic forms for expressing the norms of Contextual Integrity.

We evaluate the privacy features of the language in three ways. First, we present

theorems about the complexity of combination and compliance, distinguishing be-

tween weak compliance (which does not consider the feasibility of future obligations)

v

and strong compliance (which guarantees that agents can discharge their future obli-

gations). Second, we compare the language with other approaches to codifying pri-

vacy policies, finding that our language generalizes a number of other approaches.

Third, we show that the language is capable of expressing the privacy requirements

from a number of privacy regulations, including the Health Insurance Portability and

Accountability Act.

To evaluate the utility features, those features that aid in reasoning about the

usefulness of various data practices, we offer a theory of organizational workflows,

also known as business processes. In this setting, we examine the trade-offs between

privacy and utility in workflow design (including notions of “minimum necessary”

information disclosure) and offer practical algorithms for auditing workflow execution

to discover agents who both violate their workflow responsibilities and cause the

organization to violate its privacy policy.

vi

Contents

Acknowledgments iv

Abstract v

1 Introduction 1

1.1 Privacy . 3

1.2 Utility . 5

1.3 Related Work . 7

1.3.1 Access Control . 8

1.3.2 Privacy . 9

1.3.3 Workflow and Utility . 11

1.4 Organization . 11

2 Anomalous Privacy Languages 13

2.1 Platform for Privacy Preferences . 13

2.1.1 P3P Policies . 14

2.1.2 Perspectives on Privacy . 15

2.1.3 APPEL and XPref: Privacy Preferences 16

2.2 Enterprise Privacy Authorization Language 19

2.2.1 Desiderata . 20

2.2.2 Evaluation . 22

2.2.3 Perspective . 24

vii

3 A Logic of Privacy and Utility 26

3.1 Overview of Contextual Integrity . 26

3.2 Model . 29

3.2.1 Attributes, Agents, and Messages 30

3.2.2 Knowledge, Communication, and Moves 31

3.2.3 Roles and Contexts . 32

3.3 Logic . 33

3.3.1 Syntax . 33

3.3.2 Semantics . 34

3.3.3 Extensions . 36

3.4 Formalization of Contextual Integrity 37

4 Evaluation of the Logic 39

4.1 Policies, Combination, and Compliance 39

4.1.1 Consistency . 40

4.1.2 Entailment . 40

4.1.3 Compliance . 41

4.2 Comparison with Other Models . 43

4.2.1 Role-Based Access Control . 43

4.2.2 Extensible Access Control Markup Language 45

4.2.3 The Enterprise Privacy Authorization Language 46

4.2.4 The Platform for Privacy Preferences 47

4.3 Expressing Privacy Regulations . 48

4.3.1 The HIPAA Privacy Rule . 49

4.3.2 Children’s Online Privacy Protection Act (COPPA) 51

4.3.3 Gramm–Leach–Bliley Act (GLBA) 52

5 Utility and Business Processes 55

5.1 Workflows and Responsibility . 55

5.2 Privacy and Utility in Workflow Design 57

5.2.1 Privacy . 58

5.2.2 Utility . 59

viii

5.2.3 Minimal Workflow . 61

5.3 Auditing Workflow Execution . 63

5.3.1 Policy Violations and Accountability 63

5.3.2 Finding Accountable Agents 65

5.3.3 Monitoring for Irresponsible Actions 66

6 Case Study: MyHealth@Vanderbilt 69

6.1 Overview . 69

6.2 Workflow . 71

6.2.1 Roles and Attributes . 71

6.2.2 Graph . 71

6.2.3 Responsibilities . 72

6.3 Evaluation . 73

7 Conclusion 75

Bibliography 82

ix

Chapter 1

Introduction

In the past few decades, we have seen a radical intensification in the social practices of

gathering, storing, manipulating, and sharing information about people (henceforth,

“personal information”). In many instances, new practices have aroused suspicion,

indignation, and protest not only among legal experts, social critics, and privacy

advocates, but also in the popular media and among the general public. Recent con-

troversies range from the introduction of Caller ID to Lotus Marketplace Households

and EZ Pass, from Carnivore and “total information awareness” to Internet cook-

ies and online profiling. This societal awareness [1] has lead to privacy becoming an

important business concern in health care, financial services, and other organizations.

Hospitals, clinics, banks, credit card clearing houses, customer support centers,

and academic institutions, among others, all maintain databases with sensitive in-

formation. These databases are used regularly by employees to carry out business-

critical tasks. Organizations that collect and use personal information face the grow-

ing challenge of conducting their business effectively while managing privacy risks

and compliance requirements. The risks are very real, with the theft of 26 million

veteran records in May 2006 demonstrating how easily sensitive information can fall

into unauthorized hands [24]. In the United States, privacy regulations, such as the

Health Insurance Portability and Accountability Act (HIPAA) [54] for the health care

sector, the Children’s Online Privacy Protection Act (COPPA) [35] for e-business, and

the Gramm–Leach–Bliley Act (GLBA) [36, 34] for financial institutions, have spurred

1

CHAPTER 1. INTRODUCTION 2

many businesses, including 68% of the Direct Marketing Association member com-

panies as of 2001 [28], to appoint Chief Privacy Officers whose primary job is being

responsible for privacy issues and policies.

One of the biggest problems that privacy-sensitive organizations face is design-

ing their internal activities and information practices to simultaneously serve their

customers effectively and manage risks from disclosure of sensitive information. This

fundamental problem arises in hospitals and clinics, where personal health informa-

tion must be used to provide effective health care, but must also be protected from

indiscriminate sharing to respect the privacy of patients—a requirement made more

precise by HIPAA. Financial institutions use sensitive financial information to de-

cide whether to grant loans, for example, and suffer direct loss and brand erosion if

sensitive information is lost. Retail enterprises use credit card details in resolving

charge-back disputes (where the privacy concerns are exacerbated [9] by the common

practice of outsourcing this task). College admissions officers review confidential let-

ters of recommendation and transcripts.

To manage these risks and ameliorate consumer concerns, these organizations have

developed privacy policies and business processes that govern their use of confidential

information. However, these privacy policies are often represented in legalistic free

text [40] and are difficult to integrate directly into the organization’s business pro-

cesses and information systems, leaving executive and consumers to wonder whether

the organization actually complies with its own privacy policy. For these policies

to be effective, the organization must carefully design the way it processes and uses

information to balance the competing goals of privacy and the usefulness, or utility,

of the business process.

Business process designs involve instructing individuals how and when to access

and use information, coupled with access and use policies embedded in information

processing systems. Because considering utility or privacy alone does not provide

enough information to make meaningful management decisions, our goal is to develop

a framework and model for designing, evaluating, and auditing business processes to

achieve utility goals while minimizing privacy risks, with particular attention to the

requirements of health care providers and financial institutions.

CHAPTER 1. INTRODUCTION 3

1.1 Privacy

Although there are philosophical theories of the nature and value of privacy, these

tend to offer an account of what privacy is—say, control over information about

oneself—and might explain why it ought to be valued and protected in liberal democ-

racies. In contrast, the framework of contextual integrity has arisen in recent years to

provide guidance on how to respond to conflicts between values and interests and to

provide a systematic setting for understanding privacy expectations and the reasons

that some events cause moral indignation [52, 56]. The central tenant of contextual

integrity is that people interact in society not simply as individuals in an undifferen-

tiated social world, but as individuals in particular capacities or roles, in distinctive

social contexts (e.g., health care or banking). Our logic of privacy and utility is a

formal framework for expressing privacy expectations and privacy practices inspired

by contextual integrity.

We begin with a simple model of the transmission of personal information, con-

taining communications such as “Alice sends Bob a particular type of information

about Carol,” and use first-order temporal logic for expressing and reasoning about

which communications are and are not appropriate. The central concepts drawn from

contextual integrity include contexts, roles, and a focus on the type of information

transmitted (Carol’s height) rather than specifics of the data (Carol is 5’10” tall).

Roles within contexts are used to express that communication that is perfectly ac-

ceptable between a psychiatrist and patient is completely unacceptable between a

human resource specialist and a job applicant. Temporal logic with past and future

operators is used to say, for example, that particular information may be disclosed

only if the subject mentioned has previously given permission or that if particular in-

formation is made public, notification must be sent to the concerned party. Although

contextual integrity was developed to support specific, substantive philosophical and

legal positions, our goal is to formalize concepts from contextual integrity so that

privacy guidelines, policies, and expectations can be stated precisely, compared, and

enforced by an information processing system.

CHAPTER 1. INTRODUCTION 4

We define two kinds of norms, which we call positive and negative, as temporal

logic formulas of two particular forms. These two kinds of norms generalize “al-

low” and “deny” rules found in traditional access control languages to settings with

temporal conditions. A positive norm permits some communication if its temporal

condition is satisfied, whereas a negative norm forbids some communication unless

its temporal condition is satisfied. We give these formulas semantics by interpreting

them over a model of communicating agents. The privacy fragment of the logic is con-

tained in Linear Temporal Logic (see, for example, [48]) and concerns trace histories

of agent communications. One agent communicates with another agent by sending

information about a subject. Our model of “information” includes a relation that lets

agents combine messages to compute additional information about the subject (e.g.,

computing a postal code from a postal address), elucidating the notion of a “data hi-

erarchy” found in the Platform for Privacy Preferences (P3P) [26] and the Enterprise

Privacy Authorization Language (EPAL) [41]. To illustrate the expressiveness of this

framework and explain its use, we show how to capture privacy provisions of HIPAA,

COPPA, and GLBA as combinations of positive and negative norms with temporal

conditions.

Our current framework makes two simplifying assumptions: norms are based only

on the type of information communicated and information is assumed to describe an

individual rather than a group of individuals. For example, we can easily express

that it is acceptable for a physician to record particular types of information, but it

is outside the scope of our current language to say that the average salary of bank

managers can be released only if it does not identify a particular individual’s salary.

We believe it will be fruitful to develop precise connections with research on data

privacy and aggregation in the future, but for simplicity we do not consider these

extensions at present.

Like much of the work on access control and privacy languages in the computer

security community, we express privacy policies in a formal logic and relate issues of

compliance and refinement to the logical concepts of satisfiability and entailment. In

addition to evaluating the expressive power of our language, we present specific tech-

nical results characterizing policy consistency, entailment, and compliance, leveraging

CHAPTER 1. INTRODUCTION 5

the existing literature on Linear Temporal Logic (LTL). Entailment is key to under-

standing how to combine policies and how to compare one policy, such as HIPAA,

with another policy, such as the specific privacy practices of a clinic and hospital.

Previous work on privacy languages used a complex lattice-based definition of entail-

ment. In our model, entailment is captured as standard logical implication, letting

us define and compute policy combination through the usual logical operations of

conjunction and disjunction and without reference to complex objects, such as data

hierarchies, that have been responsible for the anomalous semantics of combination

in earlier languages.

1.2 Utility

Analyzing an organization’s data practices in a privacy-only framework often leads to

advocating for stricter control of information. A privacy-only analysis fails to consider

the useful purpose the data practices serve for the organization. For example, in a

hospital, nurses and doctors need to share sensitive information about patients in

order to provide health care services. This information sharing is useful, has utility,

because it furthers the purpose of the health care context, i.e., promoting health.

By formulating an organization’s data practices as a business process, or workflow,

we are able to formalize the notion of utility in a unified framework with privacy,

letting us examine the trade-offs between privacy and utility. Our approach expands

the LTL fragment of the logic of privacy and utility to Alternating-time Temporal

Logic (ATL*) by including a strategy quantifier. The strategy quantifier lets us reason

about what useful outcomes individuals interacting via the workflow can achieve. We

illustrate these concepts using MyHealth@Vanderbilt [69], a web-based patient portal

built and used at the Vanderbilt Medical Center. Examining the MyHealth portal

led to many insights captured in our general theory.

The individuals in MyHealth act as patients, doctors, nurses, or secretaries, ac-

cording to a specific workflow for scheduling appointments, viewing lab results, and

asking and answering heath questions. One utility goal for MyHealth is to respond

to health questions from patients. The MyHealth workflow also has privacy goals,

CHAPTER 1. INTRODUCTION 6

which we express using positive and negative norms that specify the conditions under

which personal information can be communicated from one party to another. For

example, one of MyHealth’s privacy goals is to restrict health information to doctors

and nurses, the health care providers.

Using a model of actions that transmit personal information from a sender in

one role to a receiver in a possibly different role, agents may accumulate and send

different types of personal information they receive. These messages represent emails,

web forms, database entries, workflow data structures, and arguments to actions. We

assume that messages have associated tags (e.g., “health information”) to indicate

their contents, but consider business processes in which human agents may tag mes-

sages incorrectly. This model forms a concurrent game structure [5] of agent actions

that gives semantics to the logic of privacy and utility.

We also formulate the workflows themselves in temporal logic by associating a

responsibility to each agent role. For example, in the patient portal workflow, doc-

tors are responsible for answering health questions and secretaries are responsible for

scheduling appointments. We consider both a general class of workflows presented

abstractly by logical formulas and a more concrete subclass of practical workflows

presented as a labeled graph or automata. Within this setting, we formulate and ad-

dress the design-time and run-time questions below about whether a given workflow

achieves its privacy and utility goals.

1. Does a given workflow achieve privacy and utility if all agents act responsibly?

We present algorithms for answering this question, both by building on gen-

eral results about LTL and by introducing the notion of a local communication

game. Specifically, privacy properties may be evaluated using standard LTL

model-checking over the traces generated by responsible executions of the con-

current game structure. Evaluating utility is more involved because of the ATL*

path quantifiers and, in general, is undecidable [5] because agents learn only of

messages they send or receive. Because of this limitation, we present a sound

decision procedure for a restricted, but useful, class of formula defined.

CHAPTER 1. INTRODUCTION 7

2. Can irresponsible agents be detected and held accountable for violations?

If the execution of a workflow satisfying the design criteria in question (1)

above actually violates privacy, then some agent must have caused the viola-

tion by acting irresponsibly. These violations can be caught at run time, and

the accountable agent determined using auditing algorithms we present. These

algorithms are not fully automatic (or else they could be used for enforcement)

but require an oracle (such as a human auditor) to determine the accuracy of

message tags. We seek to minimize the number of oracle calls (reducing the hu-

man auditor’s work) by using classical causality ideas in distributed computing

and a new notion of “suspicious events.”

Privacy advocates often recommend reconciling the competing interests of privacy

and utility with the principle of minimum necessary disclosure: disclose the minimum

information necessary to achieve the utility goal. This principle is included expressly

in several influential privacy policies, including the HIPAA Privacy Rule and the

Markle Connecting for Health Common Framework [49]. We leverage our unified

model of privacy and utility to provide a formal definition of this principle.

We apply these concepts to the MyHealth patient portal and recommend sev-

eral design changes to the MyHealth developers at Vanderbilt. Message tags are

themselves one such suggestion, enabling finer grained message routing. Our au-

diting algorithms were developed in response to the MyHealth developers’ concern

about incorrectly tagged messages. We suggest further privacy improvements in the

MyHealth workflow based on tagging and illustrate our auditing methods using a

hypothetical execution of MyHealth with an irresponsible agent.

1.3 Related Work

There is a large body of related work. This section discusses related work from the

literatures on access control, privacy, utility, and workflows. Chapter 2 details the

anomalies in earlier privacy languages, and Section 4.2 compares our logic with other

privacy languages.

CHAPTER 1. INTRODUCTION 8

1.3.1 Access Control

Discretionary. Unlike traditional access control policies (see, for example, [20, 25,

38]), which are designed to limit the actions of untrusted or malicious principals, pri-

vacy policies often are concerned with well-meaning, but perhaps non-expert, mem-

bers of an organization. For example, health-care workers in a hospital are obligated

to comply with HIPAA but might not be experts in what restrictions HIPAA places

on their actions. A system that simply informed these individuals when they might

be violating HIPAA would be useful in that they could more easily comply with the

law. Moreover, health-care professionals are often leery of technology that prevents

them from performing their duties. These professionals are skeptical of, and unwill-

ing to adopt, an electronic medical record system that displays an “access denied”

message to an emergency room doctor trying to save the life of a patient. For these

reasons, we seek not to circumscribe actions, as one might in a digital rights man-

agement approach to privacy, but instead we seek to inform well-meaning principals

about whether their actions comply with a privacy policy (and what future obligations

those actions incur).

In comparison with access control and previous privacy policy frameworks, our

norms focus on who personal information is about, how it is transmitted, and past

and future actions by both the subject and the users of the information. Access

control systems, conventionally, do not track whom information is about: permission

to read or write a file might be granted or denied, but the decision is not based on who

is described by the information in the file. Generally speaking, access control policies

instruct a system as to whether a specific action is permitted, typically by deriving a

relation between subjects, objects, and actions (possibly by grouping subjects by role).

Conventional access control systems might make decisions based on the current state

of the resources that it governs, but generally do not inquire about the past or impose

restrictions on the future. In our model, the subject of information in a message is

as important as the sender and the recipient of the message. For example, norms

can permit doctors to communicate personal information about their patients but

forbid them from communicating the personal information of their administrative

CHAPTER 1. INTRODUCTION 9

assistants. Additionally, temporal operators play a key role, capturing both “opt-

in” (a past requirement) and confidentiality (a future requirement) using a single

construct.

Mandatory. Another branch of the access control literature deals with mandatory

access control [19]. These access control mechanisms often are design to enforce non-

interference, preventing principals with “low” classification from learning information

classified as “high.” Although superficially similar to the information flow proscrip-

tions in contextual integrity, these mandatory access control policies seek to prevent

all information leakage whereas our model treats personal attributes as symbolic

pieces of information. Consider, for example, the parking receipts from a hospital’s

parking garage. The time and date stamp on each receipt contains information about

whether the owner of the car is on kidney dialysis. A strict non-interference policy

would classify these receipts as “high” and prevent their disclosure to a principal

classified “low.” The logic of privacy and utility takes a more pragmatic position and

does not automatically consider the receipts protected health information (as defined

under HIPAA).

1.3.2 Privacy

P3P. The World Wide Web Consortium has proposed the Platform for Privacy

Preferences (P3P) to enable service providers to post machine-readable privacy poli-

cies [1, 58, 27, 26, 21]. Built into Internet Explorer, P3P is the most widely deployed

privacy language, but is also the least expressive. To make use of P3P policies,

consumers (or consumer advocacy groups) express their privacy preferences in a lan-

guage such as APPEL [27] or XPref [3]. The consumer’s user agent then compares

the consumer’s privacy preferences with service provider’s privacy promises. Service

providers who post P3P policies promise specific data practices, but P3P itself is not

designed to aid policy enforcement, although recent work [44] has examined enforcing

P3P policies in database systems.

CHAPTER 1. INTRODUCTION 10

EPAL. The Enterprise Privacy Authorization Language (EPAL) [41, 11, 63, 13] is

a privacy language designed by IBM to enforce privacy policies within the enterprise.

EPAL, like the eXtensible Access Control Markup Language (XACML) [7, 6] on

which it is based, defines the semantics of its policies in terms of an algorithm for

evaluating policies. If Alice wishes to perform an action governed by a formal EPAL

privacy policy, then she must first consult an authorization service. The authorization

service, in turn, interprets the EPAL policy description and then responds with the

set of restrictions that the policy levies on the desired action. Alice is then obligated

to abide by those restrictions that the service returns.

Privacy APIs. Privacy APIs [50], is a privacy language based on a classic access

control model. Privacy APIs are sufficiently expressive to capture the privacy pro-

visions of HIPAA, although much of the complexity of data hierarchy and temporal

conditions is relegated to a set of uninterpreted “evidence” strings. Other work [8, 9]

formalizes privacy policies used by organizations but does not consider how to enforce

those policies or how the policies affect the design of organizational workflow.

Group Privacy. In addition to work on individual privacy, a number of researchers

have written papers about group privacy. In group privacy, also known as database

privacy, a data aggregator, such as the Census Bureau or a hospital, releases sensitive

attributes about a large number of individuals. The group privacy work focuses on

disclosing as much aggregate information as possible while limiting what informa-

tion an adversary can deduce about individual members of the group. Releasing too

much information, even seemingly de-identified data, can often lead to the attacker

identifying the individuals in the data [66, 51]. There are a number of techniques for

anonymizing data. In k-anonymity [60] and l-diversity [47], the aggregator suppresses

various database cells in the name of privacy. Other work suggests that the aggrega-

tor perform more substantial data transformations [33, 22] or limit which aggregate

queries are available [42] to untrusted users. In contrast to the work on group privacy,

we focus on individual privacy because our applications, health care providers and

financial institutions, require access to individually identified personal information.

CHAPTER 1. INTRODUCTION 11

Some privacy regulations, including HIPAA, do provide for the disclosure of sanitized

aggregate information about sensitive attributes, which is where techniques for group

privacy find application.

1.3.3 Workflow and Utility

Several formalisms have been considered for specifying workflows, most notably Petri

Nets [2], UML Activity Diagrams [32], and the Business Process Execution Lan-

guage (BPEL) [53]. The Petri Net model is useful for understanding reachability

and parallelism properties of workflows, but is difficult to apply to privacy because

the stones in the net, which represent performing tasks or exchanging messages, are

untyped (or, more precisely, typed implicitly by their location). The formalism for

UML Activity Diagrams is graphical, complicating integration with the linguistic for-

malisms of privacy policies. Alternatively, BPEL, for which Oracle provides an execu-

tion engine [55], views a workflow as conglomeration of web services. Unfortunately,

BPEL resembles an imperative programming language and is Turing-complete, fore-

closing the possibility of deciding whether a BPEL workflow complies with a privacy

policy or achieves a utility goal.

Workflow and authorization have been considered together previously, both for

access control [10] and for privacy [67], but those works treat the workflow as given

and do not consider the utility goal as a constraint on workflow design. Moreover,

neither considers auditing deviations from prescribed workflow execution. Conflicts

between privacy and utility goals have been recognized in other settings, such as in

k-Anonymity [60, 66]: when a database cell is suppressed, privacy is enhanced and

utility is diminished. When Dwork and Nissim [33] perturb a dataset to achieve

privacy, utility concerns motivate them to minimize the amount of added noise.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 relates semantic

anomalies in P3P and EPAL, both popular existing privacy languages, motivating

CHAPTER 1. INTRODUCTION 12

the improvements in our model. Chapter 3 defines the syntax and semantics of the

logic of privacy and utility and details the fragment used to formalize contextual

integrity. Chapter 4 evaluates the logic by developing its theory of combination, com-

paring its expressiveness with other privacy languages, and expressing three federal

privacy regulations, HIPAA, COPPA, and GLBA. Chapter 5 expands the discussion

to include utility and contains specific results about evaluating workflow design and

auditing workflow logs. Chapter 6 studies the MyHealth@Vanderbilt patient portal

in our model and recommends modifying the portal’s workflow to improve its privacy

protections. Finally, Chapter 7 concludes.

Chapter 2

Anomalous Privacy Languages

In this chapter, we examine semantic anomalies in two privacy languages, the Plat-

form for Privacy Preferences (P3P) and the Enterprise Privacy Authorization Lan-

guage (EPAL). These anomalies arise from the notion of a data hierarchy, which

relates different attributes about a subject. Although related to the role hierarchy in

role-based access control models, the data hierarchy presents a challenge unique to

privacy languages. EPAL also has semantic anomalies in connection with obligations,

which require a principal to discharge some duty after querying the privacy policy.

Portions of this chapter appear in [17] and [16].

2.1 Platform for Privacy Preferences

A World Wide Web Consortium standard, the Platform for Privacy Preferences, or

P3P, is a formal language for communicating privacy promises to consumers [27].

Many web sites deploy P3P policies [21], and the Internet Explorer web browser

includes a P3P client. A P3P policy is a promise by a service provider to limit the

use of particular data to particular purposes, recipients, and retention periods.

Prior to retrieving a web page, a consumer’s web browser downloads the site’s

P3P policy and compares the policy against the consumer’s privacy preferences. If

the policy respects the user’s preferences, the web browser retrieves the web page.

However, if the policy does not respect the user’s preferences, the browser may block

13

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 14

the site or notify the user. When manipulating data, the web site operator is obligated

to adhere to the P3P policy under which it collected the data.

2.1.1 P3P Policies

P3P policies state privacy restrictions in terms of a data hierarchy, called the base

data schema, or an extension thereof. A data hierarchy is a taxonomy of personal at-

tributes, such as a subject’s home telephone number or date of birth. These attributes

are arranged in a hierarchy. For example, home telephone number is a sub-attribute

of home contact information, which is a sub-attribute of contact information.

P3P policies are comprised of statements that attach a set of purposes, recipi-

ents, and retention periods to a set of personal attributes in the data hierarchy. In

each statement, the policy’s issuer promises to restrict its uses and disclosures of the

specified attributes to the specified purposes, recipients, and retention periods. For

example, in the P3P statement below, webmd.com promises to restrict use of the user’s

name and birthday to the “current” purpose and the “individual analysis” purpose.

<STATEMENT>

<PURPOSE>

<current/>

<individual-analysis/>

</PURPOSE>

<RECIPIENT>

<delivery required="opt-in"/>

</RECIPIENT>

<RETENTION>

<legal-requirement/>

</RETENTION>

<DATA-GROUP>

<DATA ref="#user.name" optional="yes"/><DATA ref="#user.bdate"/>

</DATA-GROUP>

</STATEMENT>

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 15

Based on this policy, webmd.com may disclose the user’s name and birthday to delivery

agents, but this disclosure will be made only if the user opts in. Finally, webmd.com

may retain the user’s name and birthday to meet legal requirements on data retention.

A P3P statement attaching a promise to a node in the data hierarchy (for example,

#user.name) also attaches that promise to all children of that node (for example,

#user.name.given). If two statements attach different promises to the same data

object, the issuer is permitted to perform actions permissible under either promise.

Thus, requirements inherit down the hierarchy and a policy is the disjunction of its

statements.

2.1.2 Perspectives on Privacy

Previous models of privacy policies [41] do not distinguish between the perspectives

of those who handle personal data and those whose personal data is being handled.

Such a distinction, however, is key to understanding the semantics of a privacy policy.

Consider the following example. Alice is a consumer and Dr. Bob is a service provider.

They are concerned with the Alice’s blood cholesterol level, T-cell count, and blood

test results. These attributes are related in the sense that both blood cholesterol level

and T-cell count are types of blood test results (and hence descendants of blood test

results in the data hierarchy). Alice and Bob are concerned with disclosure of these

attributes.

Alice is HIV-positive. She wishes to keep her medical records private because she

fears she will be denied health insurance if prospective insurers learn her HIV status.

She could prohibit disclosure of her entire medical history, but she can obtain a better

insurance rate if she permits some disclosures. She is willing to disclose some of her

record, such as her age, weight, and x-rays, but she does not wish to disclose results

of blood tests. In evaluating privacy policies, Alice decides to ask, “Does this policy

permit disclosure of blood test results?”

After framing her question, Alice consults the privacy policy of her physician,

Dr. Bob, to determine if he will respect her preference and keep her blood test results

confidential. In his policy, Dr. Bob promises not to disclose blood cholesterol levels.

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 16

This is not sufficient to satisfy Alice because it does not preclude Dr. Bob from

disclosing her T-cell count. Alice, therefore, concludes that Dr. Bob’s policy does

permit disclosure of some important blood test results.

Dr. Bob’s perspective on his policy is different from Alice’s perspective. In order

to provide quality care for his patients, Dr. Bob wishes to disclose particular records,

such as blood test results. In evaluating his privacy policy, he decides to ask, like

Alice, “Does this policy permit disclosure of blood test results?” His policy promises

not to disclose blood cholesterol levels, and therefore his policy prohibits him from

disclosing blood test results in their entirety. He concludes his policy does not permit

disclosure of arbitrary blood test results.

Alice and Dr. Bob appear to be asking the same question, but their different

perspectives lead them to interpret their questions using different modalities. Alice is

worried about Dr. Bob disclosing part of her blood test results, so she might restate her

question as, “Does this policy permit disclosure of some blood test results?” Dr. Bob

is worried about upholding his promises about blood test results, so he might restate

his question as, “Does this policy permit disclosure of all blood test results?” The

different modalities in these questions result in different answers for the same policy.

2.1.3 APPEL and XPref: Privacy Preferences

P3P policies are designed to be interpreted by automated user agents. A consumer’s

agent compares the data practices promised by a service provier’s P3P policy with

the consumer’s privacy preferences, which are themselves expressed in a formal lan-

guage. These privacy preferences let consumers specify which data practices they find

acceptable and which they find unacceptable. If the user agent determines that the

privacy policy does not conform to the consumer’s preferences, the user agent can

notify the consumer, letting the consumer make an informed decision about whether

to use the service.

Semantically, a consumer’s privacy preferences are a predicate over privacy poli-

cies, indicating whether the policy conforms to the preferences. One natural con-

straint on privacy preferences is that consumers prefer more restrictive policies. In

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 17

particular, if a consumer finds a particular policy acceptable, the consumer will also

find all strictly more restrictive policies acceptable, and, conversely, if a consumer

finds a particular policy unacceptable, the consumer will also find all strictly less

restrictive policies unacceptable.

Formally, we say that consumer privacy preferences are robust if they are mono-

tonic with respect the “strictness” ordering on privacy policies. We can view a robust

set of privacy preferences as an upper bound on policy permissiveness. For example,

a preference to block web sites that use home telephone numbers for telemarketing

is robust, whereas a preference to block web sites that do not use home telephone

numbers for telemarketing is not robust.

Non-robust preferences are somewhat nonsensical. Suppose a consumer wished

to enforce a non-robust privacy preference that blocked access to web sites that did

not use home telephone numbers for telemarketing. However, just because a web site

reserves the right to use home telephone numbers for telemarketing does not mean

they will actually use them. Although the consumer’s privacy preference matches

the site’s policy, the consumer has not been promised that his or her home telephone

number will be used for telemarketing. Ideally, a preference language would not

be able to express non-robust preferences because a consumer who writes such a

preference is almost certainly making an error.

APPEL. The P3P specification defines a language for expressing privacy prefer-

ences called A P3P Preference Exchange Language (APPEL) [27]. An APPEL pref-

erence reports whether interactions with a service provider espousing a P3P policy

should be blocked, limited, or allowed to proceed. An APPEL preference is a set of

rules, each of which consists of a judgment (block, limited, or request) and a con-

dition under which to issue that judgment. Rules are processed in order, optionally

halting at the first rule whose condition is met. A consumer can express non-robust

privacy preferences in APPEL. For example, the following APPEL preference is not

robust.

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 18

<appel:RULE behavior="block">

<p3p:POLICY>

<p3p:STATEMENT appel:connective="or">

<p3p:PURPOSE appel:connective="non-and">

<p3p:telemarketing />

</p3p:PURPOSE>

</p3p:STATEMENT>

</p3p:POLICY>

</appel:RULE>

XPref. XPref is another language for expressing privacy preferences, based on

XPath [23]. The designers of XPref were motivated by their difficulty expressing

simple privacy preferences in APPEL [3]. Following from this motivation, the XPref

designers endowed XPref with significant expressive power. Unfortunately, XPref can

also express non-robust preferences. For example, the non-robust XPref rule below

blocks services that do not use collected information for telemarketing.

<RULE behavior="block"

condition="/POLICY/STATEMENT/PURPOSE/*

[name(.) != ‘telemarketing’]" />

Using XPref robustly is non-intuitive. For example, a number of the example XPref

policies provided by the XPref designers in [3] are non-robust. Consider the privacy

preference “block services that collect my home address.” Näıvely, a consumer might

expect the XPref rule below to express that preference:

<RULE behavior="block"

condition="/POLICY/STATEMENT/DATA-GROUP/*

[name(.) = ‘DATA’ and @ref = ‘#user.home-info.postal’]" />

However, this preference will not block a service whose privacy policy states that it

collects user.home-info data (which includes postal address). A consumer’s second

attempt to encode this preference in XPref might be the rule below:

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 19

<RULE behavior="block"

condition="/POLICY/STATEMENT/DATA-GROUP/*

[name(.) = ‘DATA’ and

(@ref = ‘#user.home-info.postal’ or

@ref = ‘#user.home-info’ or

@ref = ‘#user’)]" />

Unfortunately, this preference is still not accurate. A service provider might dis-

close that it collects each individual sub-element of user.home-info.postal, such

as street, without explicitly disclosing that it collects home addresses. The XPref

rule below accurately expresses this preference by correctly capturing the consumer’s

some modality:

<RULE behavior="block"

condition="/POLICY/STATEMENT/DATA-GROUP/*

[name(.) = ‘DATA’ and

(starts-with(@ref, ‘#user.home-info.postal’) or

@ref = ‘#user.home-info’ or

@ref = ‘#user’)]" />

2.2 Enterprise Privacy Authorization Language

The Enterprise Privacy Authorization Language (EPAL) [63], promoted by IBM [41],

is a formal language for expressing privacy policy. By formalizing its privacy policy in

EPAL, an organization can mechanically enforce its privacy privacy policy. Typically,

an EPAL policy is evaluated at a policy decision point, which is queried by a policy

enforcement point responsible for enforcing the privacy policy.

Given a contemplated action, an EPAL policy evaluates to either an allow, a

deny, or a “don’t care” judgment. The “don’t care” judgment means that this policy

neither allows nor denies the action. In addition to allowing or denying actions, EPAL

policies can entail obligations that require or prohibit future actions. For example,

an airline company’s privacy policy might permit a hotel affiliate to learn a frequent

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 20

traveller’s email address but then require the affiliate to notify the traveller and let

him or her opt out of future promotions.

Similar to data attributes, the various obligations in an EPAL policy might be

related to each other. For example, the obligation to expunge a travel itinerary within

one week subsumes an obligation to expunge the itinerary within one month in the

sense that complying with the first necessarily entails complying with the second.

Two obligations might also be incompatible. For example, the obligation to expunge

an itinerary within one month is incompatible with the obligation to retain the same

itinerary for one year in the sense that it is impossible to fulfill both obligations.

2.2.1 Desiderata

To evaluate EPAL, we propose four properties a well-designed privacy language could

hope to achieve. Ideally, a privacy policy language should force consistency, permit

local reasoning, guarantee safety, and allow policy combination.

Consistency. A privacy policy that both permits and forbids a specific action is

inconsistent. More subtly, a policy that entails two incompatible obligations for the

same action is also inconsistent. For example, a privacy policy that, after performing

a specific action, entails both the requirement to “expunge within one week” and the

requirement to “retain for one year” is inconsistent because both obligations cannot

be fulfilled simultaneously.

In some sense, inconsistent policies can still be useful. For example, suppose a

policy enforcement point queries the policy and determines that a particular action

is both allowed and denied (or that the action entails incompatible obligations). The

policy enforcement point can prevent the action from occurring, thereby avoiding the

contradiction. However, this situation requires the policy enforcement point to make

a policy decision and prevents the policy itself from arbitrating which actions are and

are not permitted.

Local Reasoning. Suppose an airline’s privacy policy explicitly states that affil-

iated hotels must check an opt-out list before using email addresses obtained from

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 21

the airline. A policy auditor might wish to conclude that the entire policy actually

enforces this statement. Some privacy languages, however, do not make this a valid

conclusion. Policy languages that admit such local reasoning are easier to maintain

because policy authors need only consider local portions of the policy when deciding

whether a complex policy accurately reflects their intent.

Intuitively, a policy language admits local reasoning if every policy written in the

language enforces each of its statements, letting a policy author draw conclusions

about the entire policy from only a fragment of the policy. This property is a bit

challenging to formalize, but one approach is to endow each policy statement with

semantics independent from the policy in which the statement appears. A policy

language, then, admits local reasoning if, for each policy in the language, these locally

computed semantics are implied by the global semantics of the entire policy.

Safety. Privacy policies can be checked for internal consistency. For example, the

requirements on disclosing a subject’s home address must be at least as strict as the

requirements on disclosing the subject’s entire home contact information (because

home contact information contains home address). Imposing fewer restrictions on

disclosing home contact information than on disclosing home addresses is unsafe be-

cause a member of the enterprise can mistakenly violate the policy by disclosing a

subject’s entire home contact information and thereby disclose the subject’s home

address.

In order for a policy to be safe, the entailed obligations must also be internally

consistent. For example, consider a policy with two requirements: one that permits a

computer system to read a subject’s home address provided the system expunges the

record within one month and another that permits the computer system to read a

subject’s home contact information provided the system expunges the record within

one year. This policy also is unsafe because the computer system incurs a weaker

obligation (expunge within one year) for a less specific action (read a travel history).

The policy would be safe, however, if the policy required the system to expunge

the travel history within one week because the less specific action entails a stronger

obligation.

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 22

Combination. Often, enterprises wish to combine privacy policies. For example,

an enterprise might aim to abide both by privacy regulations and by an internal policy.

By combining its own internal policy with a standard industry-wide policy written by

a policy provider, the enterprise can ensure compliance with both policies. Partnering

or other outsourcing agreements also motivate policy combination, for example, as

in the JetBlue case study [9]. A privacy language is closed under combination if the

language can express the conjunction of any two policies expressible in the language.

Conjunction is but one policy combination operator. An enterprise might wish to

take the disjunction of two policies, for example, to determine which disclosures are

possible if one department implements one privacy policy and another department

implements another privacy policy. More precisely, a privacy language is closed un-

der a given policy combination operator (such as conjunction or disjunction) if the

language can express the result of combining any policies expressible in the language.

2.2.2 Evaluation

Consistency. Each EPAL policy rule contains a condition and applies only to

queries satisfying the condition. Given a query, the authorization service examines

policy rules in order and collects obligations from each applicable rule. The service

stops examining rules once it encounters an applicable statement containing an “al-

low” or “deny” judgement. This algorithm causes an EPAL rule to be enforced only if

(1) the query matches the rule’s condition and (2) no earlier applicable rule contains

an “allow” or “deny” judgment. These sequential semantics force consistency because

the authorization service terminates policy prior to reaching conflicting statements.

An EPAL policy can be inconsistent if the authorization service collects incom-

patible obligations before reaching an “allow” or “deny” judgment. However, the

designers of EPAL assume all obligations are compatible [41]. Although privacy lan-

guages that force consistency might seem appealing, forcing consistency has some

disadvantages. For example, an attempt both to permit and to prohibit a situation

might be viewed as a mistake by the policy author. By forcing consistency, EPAL

hides such mistakes.

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 23

Local Reasoning. EPAL’s sequential semantics render local reasoning unsound.

Because earlier policy rules can shadow later rules, a policy auditor must consider

all preceding rules in order to understand a given rule. Worse, a wholly unreachable

rule has no effect on the meaning of the policy and could mislead policy authors. For

example, the EPAL policy below does not actually require hotels to check the opt-out

list.

<epal-policy>

<rule id="a" ruling="allow">

<user-category refid="Business affiliates"/>

<data-category refid="Email addresses"/>

</rule>

<rule id="b">

<user-category refid="Affiliated hotels"/>

<data-category refid="Email addresses"/>

<obligation refid="Check opt-out list"/>

</rule>

</epal-policy>

If an affiliated hotel queries the policy regarding use of travellers’ email addresses,

the authorization service will stop evaluating the policy once it processes rule a and

will not encounter rule b, which requires consulting the opt-out list. If these policy

statements were contained in a larger policy, perhaps separated by pages of rules,

an auditor might incorrectly conclude that affiliated hotels are required to check the

opt-out list.

Safety. EPAL can express unsafe policies. To see this, consider a policy author who

tries to fix the above policy by interchanging rule a and rule b. The interchanged

policy is unsafe because an affiliated hotel can avoid being required to check the opt-

out list by querying the authorization service as a generic business affiliate. EPAL

can express unsafe policies because EPAL does not require that more general queries

lead to more stringent obligations. Unsafe policies are problematic because they

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 24

let members of the enterprise avoid obligations, either accidentally or maliciously,

undermining the intent of the policy’s author.

Combination. EPAL is not closed under combination. For example, a policy that

allows an action cannot be combined with a policy that denies an action because the

resultant policy would be inconsistent and inconsistent policies cannot be expressed

in EPAL. Moreover, two compatible EPAL policies (whose combination would be

consistent) might have a combination that is expressible in EPAL. In particular,

obligations attached to “deny” judgments can preclude combination. For example,

consider the following two EPAL policies:

1. If a member of the marketing department attempts to access a traveller’s pass-

port number, then the access is denied and must be logged in marketing’s pri-

vacy log.

2. If a member of the human resources department attempts to access a trav-

eller’s passport number, then the access is denied and must be logged in human

resources’ privacy log.

In the combined policy, if a member of an undetermined department attempts to

access a traveller’s passport number, then the access is denied and must be logged in

both marketing’s log and human resources’ log. Although policies are compatible and

their combination is consistent, the combined policy cannot be expressed in EPAL.

(There exists an extension of EPAL that is closed under combination [12].)

2.2.3 Perspective

Ideally, a privacy policy language should force consistency, permit local reasoning,

guarantee safety, and allow policy combination. However, after defining these prop-

erties precisely, we observe that these four goals cannot be achieved simultaneously

in a language that provides a minimum level of expressiveness. Although EPAL is

designed to support consistency at the cost of local reasoning and combination, we

believe that it is possible to make better design trade offs. In particular, because

CHAPTER 2. ANOMALOUS PRIVACY LANGUAGES 25

consistency of an individual policy can be determined by a practical algorithm, we

believe it is better to use a privacy language that supports local reasoning and policy

combination and to rely on tools for assuring consistency.

Chapter 3

A Logic of Privacy and Utility

In this chapter, we develop a logic for reasoning about privacy and utility. The logic

is motivated by the philosophical theory of contextual integrity [52]. The syntax is

based on Alternating-time Temporal Logic (ATL*) [5], and the semantics are based

on a specific concurrent games structure of communicating agents. This systematic

development of the language avoids the anomalous semantics that have plagued other

privacy languages. Portions of this chapter appear in [14] and [15].

3.1 Overview of Contextual Integrity

Contextual integrity is a philosophical account of privacy in terms of the transfer

of personal information. It is not proposed as a full definition of privacy, but as a

normative model, or framework, for evaluating the flow of information between agents

(individuals and other entities), with a particular emphasis on explaining why some

patterns of flow provoke public outcry in the name of privacy (and why some do

not). In the approach encompassed by contextual integrity, the intricate systems of

social rules governing information flow are the crucial starting place for understanding

normative commitments to privacy. Although contextual integrity is itself a relatively

recent term, the idea of contextually relative norms has been “in the air,” recognized

in various ways in the literature (e.g., [57, 61, 62]), and explored in some specific ways

in a variety of work dealing with professional confidentiality rules. Four constructs

26

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 27

are key to defining contextual integrity: informational norms, appropriateness, roles,

and principles of transmission.

We begin, however, with the concept of a context to capture the idea that people

act and transact in society not simply as individuals in an undifferentiated social

world, but as individuals in particular capacities (roles), in distinctive social contexts,

such as health care, education, employment, the marketplace, and so on. These

contexts should be understood as structured settings whose features have evolved

over time—sometimes long periods of time—subject to a host of contingencies of

place, culture, historical events, and more. Features that characterize particular

contexts include the assemblages of roles (sometimes open-ended) and the set of

behavior-guiding norms that prescribe (and proscribe) actions and practices, when,

for example, people consult a physician (or are the physician), attend school (or

teach), and shop (or sell).

One further feature is key to understanding what we mean here by “contexts,”

for they are characterized not only by roles and norms but also by particular ends, or

values. In the case of health care, an onlooker (say, from another planet) observing

a typical health care setting of a hospital, will be unable make proper sense of the

goings-on without appreciating the underlying purpose behind it, that is, alleviating

illness and promoting health. Although settling the exact nature of the ends and

values for any given context is not a simple matter—even in the case of health care,

which is relatively robust—the central point is that the roles and norms of a context

make sense, largely, in relation to those values. Because this point, although relevant

to the larger theory of contextual integrity, is not crucial to the specific goals of

this paper, we will not elaborate on it any further. Instead, our formalization deals

with contexts frozen at a particular moment in history, focusing on expressing their

attendant norms precisely.

For purposes of understanding privacy, norms that apply to the transmission (or

communication) of personal information from one party to another, which we call

“informational norms,” are singularly important. In a health care context, for ex-

ample, informational norms limit what physicians can say to others about the health

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 28

condition of patients under their care. Contextual integrity, then, is a feature of situ-

ations in which the informational norms of a context have been respected; when any

of these norms have been unjustly breached, then we say that contextual integrity

has been violated.

One of the key defining aspects of informational norms, and judgments that con-

textual integrity has or has not been violated, is the type (category, nature, class)

of information in question. Unlike a number of prominent normative accounts of

privacy, the approach taken here rejects the idea that a simple dichotomy—usually

between public and private (sensitive, intimate) information—is sufficient for adju-

dicating privacy claims. Instead, there is potentially an indefinite variety of types

of information that could feature in the informational norms of a given context. We

suggest the term “appropriateness” as a way to signal whether the type of informa-

tion in question conforms to the relevant informational norms. Thus, for example, in

the context of a job interview for the position of bank manager in the present-day

United States, information about applicants’ marital status is inappropriate, but it

is appropriate in the context of dating (or courtship). Because information type is

so salient an influence on people’s judgments that a violation has occurred, earlier

accounts of contextual integrity had posited norms of appropriateness as distinct from

norms of transmission. Our effort to formalize contextual integrity reveals, however,

that, at some level of generality, both can be covered by the form of transmission

norm explored in this paper.

Associated with every communication there are three relevant entities (agents,

principals): the one from whom the information flows, the one to whom the infor-

mation flows, and the one—the information subject—about whom the information

is. Entities are considered to be acting in particular capacities, or roles, which are

articulated with varying degrees of detail, within the relevant contexts. In academic

departments, for example, the roles of chair, tenured faculty, assistant professor,

student, administrator, and so forth, each are associated with a set of duties and

privileges. Thus, contextual integrity maintains that roles are key variables affecting

the rich and complex sensibility people demonstrate in their judgments over whether

a violation has occurred.

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 29

The notion of a transmission principle may be the most distinctive aspect of the

approach to privacy through contextual integrity. These principles are the specific

constraints (terms or conditions) regulating flow of information from entity to entity

prescribed by informational norms. One such principle is confidentiality, prohibit-

ing agents receiving information from sharing it with others in the future. Although

confidentiality is prominent, there are many other principles of transmission, for ex-

ample, reciprocity, determining that information flow is bi-directional (occurring in

friendship but not between a patient and a physician). Another is dessert, determin-

ing that an agent deserves to know or learn something about the subject, perhaps,

people deserving to know whether their lovers are HIV positive. An important family

of transmission principles hinges on the awareness and consent of the information

subject; in one instance, a subject might be forced to reveal information, in another,

a subject might know (or not know) whether information has been transmitted, in

a third, the subject consents to transmit information, and so on. Norms prescribe

which transmission principles ought to govern the flow of information and are under-

stood to be violated if the principles are not followed. It is worth noting that control

by subjects of the flow of information about themselves, which features definitively in

some theories, is merely one transmission principle—albeit an important one—among

many. There is probably no end to the variation in transmission principles.

3.2 Model

In this section, we formalize a fragment of contextual integrity. Our model consists

of communicating agents who take on various roles in contexts and send each other

messages containing attributes of other agents. The evolution of the knowledge of

individual agents depends on messages they receive and computation rules that enable

agents to infer further attributes. We begin with a model of communicating agents in

which agents send each other messages containing personal information about each

other. Upon receipt of a message, an agent incorporates the contents of the message

into his or her knowledge state, enlarging the set of possible messages the agent can

send in the future.

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 30

3.2.1 Attributes, Agents, and Messages

Attributes. Let T be a set of attributes. Some attributes are related to other

attributes. For example, Alice can compute Bob’s postal-code given Bob’s mailing-

address. We model this by equiping T with a partial order �. Intuitively, if Alice

knows the value of attribute t for Bob, then Alice can compute the value of each

attribute t′ � t for Bob. Thus, postal-code � mailing-address. We omit “group”

attributes, for example the average height of Alice, Bob, and Carol.

Agents. Let P be a set of agents. Agents themselves lack structure, but are associ-

ated with a set of attributes, the attribute about that agent, and interact by sending

each other messages. Let M be a set of messages. Associated with each message

m ∈M is a set contents(m) ⊆ P×T , indicating what attributes about which agents

are actually contained in the message. The contents of each message is downwardly

closed under �. Formally, if t′ � t ∈ contents(m), then t′ ∈ contents(m).

For example, Alice, Bob, and Carol are agents. Alice can send Bob a message

containing Carol’s postal address. Because the contents of messages are closed under

�, the message necessarily also contains Carol’s postal (zip) code. Intuitively, when

Bob receives Carol’s postal address, he can determine Carol’s postal code, and the

world is as if the postal code were included explicitly in the text of the message. This

direct inclusion of the data hierarchy relation, �, in the model helps avoid semantic

anomalies arising from the data hierarchy.

For some applications, we wish to distinguish message features that are readily

apparent to machines from those that require semantic understanding to observe.

To model this effect, we associate a set of tags(m) ⊆ P × T with each message m,

indicating the tags carried by the message. The tags of a message are the purported

contents of the message and need not bear any relation to the actual contents of the

message. Human agents can ascertain the actual contents of the message, whereas

mechanical agents have access only to the tags.

Actions. Both Send(p, q,m) and Receive(p, q,m) are actions where p, q ∈ P are

agents and m ∈M is a message. The action Send(p, q,m) occurs when agent p sends

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 31

message m to agent q, and the action Receive(p, q,m) occurs when agent q receives

message m from agent p. We focus on synchronous communication for which the Send

and Receive actions occur simultaneously, but we include both actions for generality.

3.2.2 Knowledge, Communication, and Moves

Knowledge. Associated with each agent is a collection of the attributes that agent

knows. A knowledge state κ is a subset of P × P × T . If (p, q, t) ∈ κ, we say agent

p knows the value of attribute t of agent q. For example, Alice knows Bob’s height.

The attribute relation � induces a transition relation on knowledge states. We write

κ
�−→ κ′ whenever:

1. κ′ = κ or

2. κ′ = κ ∪ {(p, q, t′)}, where t′ � t and (p, q, t) ∈ κ, or

3. There exists κ′′ such that κ
�−→ κ′′ and κ′′

�−→ κ′.

Intuitively, κ
�−→ κ′ if a set of agents in knowledge state κ can arrive at knowledge

state κ′ by reasoning only individually, i.e. without communicating with each other.

Communication. In order to send a message m, the sending agent must know

the contents of m. After receiving m, the receiving agent learns the contents of m.

For example, Alice can send a message to Bob containing Carol’s height just in case

Alice herself knows Carol’s height. After receiving such a message, Bob learns Carol’s

height. Associated with each knowledge state is a set of actions available to p:

availablep(κ) = {τ} ∪ {Send(p, q,m) | {p} × contents(m) ⊆ κ},

where τ is the null action that does not transmit a message. Notice that agents are

free to select arbitrary tags when sending messages. Recipients learn the contents of

messages they receive: κ
Send(p,q,m)−−−−−−→ κ′ where κ′ is a knowledge state such that

κ ∪ {q} × contents(m)
�−→ κ′.

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 32

The relation
τ−→ is the identity relation on knowledge states. For every finite set of

actions A = {a1, . . . , an} available in κ, let κ
A−→ κ′ if κ

a1−→ · · · an−→ κ′. This is well-

defined because availablep is monotonic on −→ and the resulting knowledge state is

independent of the enumeration of A.

Moves. We add operational semantics by embedding the labeled transition system

of knowledge states into a concurrent game structure [5], which we refer to as G. If G
is currently in state κ, each agent selects a move, a set of actions Ap ⊆ availablep(κ),

and G advances to the unique maximal knowledge state κ′ such that

κ

S
p Ap

−−−→ κ′.

An action Send(p1, p2,m) is visible to agent p if p is the sender, p1, or the recipient,

p2. An agent p’s view of a trace π is the subsequence π � p containing all and only

those actions visible to p. Agents are unaware of actions outside their view. Each

agent p decides which moves to make according to a local strategy, a function from

finite p-views to moves for p. This locality requirement makes G a game of imperfect

information.

3.2.3 Roles and Contexts

Following contextual integrity, we associate agents with roles as part of contexts. Let

R be a set of roles and C be a partition of R. We refer to elements c ∈ C as contexts

and the roles r ∈ c as the roles of context c. For example, “teller” is a role in a banking

context and “doctor” is a role in a health care context. The roles are structured by a

partial order ≤R. If r1 ≤R r2, then r1 is a specialization of role r2 and, symmetrically,

r2 is a generalization of r1. For example, a psychiatrist is a specialization of a doctor,

which in turn is a specialization of a health care provider.

Agents can be active in multiple roles simultaneously. For example, Alice can be

at once a doctor in a health care context and a customer in a banking context. A

role assignment ρ is a subset of P × R. If (p, r) ∈ ρ, we say agent p is active in, or

plays, role r. For example, if (Alice, psychiatrist) ∈ ρ, then Alice is active in the role

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 33

of psychiatrist. We require role assignments to be closed under role generalization,

that is if r1 ≤R r2 and (p, r1) ∈ ρ, then (p, r2) ∈ ρ. Returning to our example, if

(Alice, psychiatrist) ∈ ρ, Alice must be active in the role of doctor in addition to

that of psychiatrist. There are many instances of each context (many banks, many

hospitals), but for clarity we omit instances.

3.3 Logic

We employ a standard logical notation for expressing privacy policies. This facilitates

the technical development and clearly connects the language to the semantics based

on communicating agents. We first present the syntax of the logic first and the imbue

the syntax with semantics.

3.3.1 Syntax

The syntax of the logic is a particular signature of Alternating-time Temporal Logic

(ATL*) [5]. For example, if Alice tells Bob her age under the principle of confidential-

ity, then, in the future, Bob must not disclose Alice’s age. The past operators are also

useful for capturing “opt-in” and other similar privacy idioms. We use the fragment of

the logic in Linear-time Temporal Logic [48] to capture Contextual Integrity’s norms

of transmission. We include the ATL strategy quantifier 〈〈~p〉〉ϕ to capture notions of

utility. We employ both the contains and the tagged predicates to be able to compare

the purported and actual contents of messages.

ϕ ::= send(p, q,m) | inrole(p, r) | incontext(p, c) |

t1 � t2 | contains(m, p, t) | tagged(m, p, t) |

ϕ ∧ ϕ | ¬ϕ | ϕUϕ | ϕSϕ | Xϕ | 〈〈~p〉〉ϕ | ∃x.ϕ

Informally, the predicate send(p, q,m) indicates that agent p has just sent agent q

a message m; inrole(p, r) indicates that agent p is in role r; incontext(p, c) indicates

that agent p belongs to a role in context c; contains(m, p, t) indicates that message

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 34

m contains attribute t about agent p; tagged(m, p, t) indicates that the message m is

tagged with tag t about agent p; t1 � t2 indicates that attribute t1 can be computed

from attribute t2. ϕUψ holds if, and only if, ϕ holds until ψ holds (ψ must eventually

hold). The modality “since,” written S is the past version of U. Xϕ holds if, and

only if, ϕ holds in the next state. Finally, ∃ is rigid existential quantification.

We use the standard abbreviations ∧, →, and ∀ as usual in first order logic and

Fϕ ≡ trueUϕ for “eventually” and Gϕ ≡ ¬F¬ϕ for “henceforth” as is usual in

temporal logic (e.g., [48]). A formula ϕ is an LTL formula if it is free of strategy

quantifiers.

3.3.2 Semantics

Formulas are interpreted over the concurrent game structure G as usual for ATL [5]

with imperfect information. A formula 〈〈~p〉〉ϕ holds if, and only if, a set of agents ~p

has a local strategy to bring about ϕ. That is there exists a function mapping ~p’s view

of the history thus far to moves for each agent in ~p that ensures ϕ holds regardless of

the actions of other agents.

An environment is a function η from variables to P ∪ T ∪ M ∪ R ∪ C. For a

variable x, we write JxKη = η(x). For technical convenience, we record the most

recently performed actions along with the knowledge state κ as the state of G. In

a given state (κ,A) (where κ is a knowledge state and A is a set of actions), a role

assignment ρ, and an environment η, the predicates are defined as follows:

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 35

κ,A, ρ, η |= send(p1, p2,m)

⇐⇒ Send(Jp1Kη, Jp2Kη, JmKη) ∈ A

κ,A, ρ, η |= inrole(p, r)

⇐⇒ (JpKη, JrKη) ∈ ρ

κ,A, ρ, η |= incontext(p, c)

⇐⇒ There exists r ∈ JcKη such that (JpKη, r) ∈ ρ

κ,A, ρ, η |= t � t′

⇐⇒ JtKη � Jt′Kη

κ,A, ρ, η |= contains(m, q, t)

⇐⇒ (JqKη, JtKη) ∈ content(JmKη)

κ,A, ρ, η |= tagged(m, q, t)

⇐⇒ (JqKη, JtKη) ∈ tags(JmKη)

κ,A, ρ, η |= ϕ1 ∧ ϕ2

⇐⇒ κ,A, ρ, η |= ϕ1 and κ,A, ρ, η |= ϕ2

κ,A, ρ, η |= ¬ϕ

⇐⇒ κ,A, ρ, η 6|= ϕ

The temporal operators and the strategy quantifier are defined as usual [5] for ATL*.

For the temporal modality S, we choose the linear past semantics. To simplify nota-

tion, we use the following standard symbols:

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2

Fϕ ≡ >Uϕ Gϕ ≡ ¬F¬ϕ

F−ϕ ≡ >Sϕ G−ϕ ≡ ¬F−¬ϕ

ϕ1Wϕ2 ≡ ϕ1Uϕ2 ∨Gϕ1 ϕ1Bϕ2 ≡ ϕ1Sϕ2 ∨G−ϕ1

∀x.ϕ ≡ ¬∃x.¬ϕ

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 36

The formula Fϕ is read “eventually ϕ,” and indicates that ϕ will eventually hold.

Its dual modality, G, is read “henceforth.” The modalities F− and G− are the past

forms of F and G, respectively. We will often write σ |= ϕ in place of σ, 0, η |= ϕ

when ϕ has no free variables (and thus does not depend on η).

3.3.3 Extensions

There are number of possible extensions to the logic. Typically, the extensions provide

added expressiveness at a small complexity cost. Here, we discuss two such extensions.

Actions. Formally, the syntax of the logic contains only send actions. Other actions

can be faithfully represented as sending messages, as in object-oriented programming

languages such as Smalltalk and Java. The formula below expresses that a customer’s

telephone number should not be used for telemarketing:

G∀p, q, d. inrole(p, customer) ∧ contains(d, p, telephone-number)→

¬ send(q, telemarketing, d)

Syntactic sugar could be added to more naturally express general actions without

affecting the technical results of this thesis provided all the actions are recorded in

the audit log.

Parameterized Roles. Some policies require finer distinctions between roles. For

example, in order for Alice to perform an action, the policy might require that not only

that is Alice a doctor, but also that she is Bob’s doctor. The logic can be extended

to express these parameterized roles by replacing the two-ary inrole predicate with a

three-ary inrole predicate, as in inrole(Alice,Bob, doctor). Semantically, roles become

pairs containing a role identifier and an agent. Again, the main results of the thesis

are unaffected.

Purpose. A number of policies depend on the purpose, or motivating reason, behind

a communication action. (Note that this use of the term differs from the use of the

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 37

term in Contextual Integrity.) For example, some policies contain provisions that

permit some communications for shipping purposes but not for other purposes. Often

these provisions can be expressed by restricting the roles of message recipients (for

example to delivery agents), but we can also extend the language to contain purpose

directly by adding another parameter to the send predicate.

3.4 Formalization of Contextual Integrity

Contextual Integrity’s norms of transmissions are expressible in an LTL fragment of

the logic of privacy and utility. Each norm is either positive or negative. A positive

norm might state that doctor Alice can send patient Carol’s test results to researcher

Bob if Bob keeps the records in confidence. Negative norms are dual: they state

communication can occur only if the temporal condition is satisfied. For example,

doctor Alice can send patient Carol’s test results to researcher Bob only if Bob keeps

the records in confidence. In the positive case, some other norm could authorize

the communication and Bob would not be obliged to keep the results confidential,

whereas in the negative case Bob must keep the results confidential regardless of how

he obtained them from Alice.

We say a trace σ satisfies the norms of context c if the formula below holds. The

formula below takes a disjunction over the positive norms of transmission for context

c, denoted norms+(c), and a conjunction over the negative norms of transmission for

context c, denoted norms−(c). Thus, in order to satisfy the norms, a communication

must be allowed by at least one of the positive norms and it must respect all of the

negative norms.

σ |= G∀p1, p2, q.∀m.∀t.

incontext(p1, c) ∧ send(p1, p2,m) ∧ contains(m, q, t)→∨
ϕ+∈norms+(c)

ϕ+ ∧
∧

ϕ−∈norms−(c)

ϕ− (3.1)

CHAPTER 3. A LOGIC OF PRIVACY AND UTILITY 38

positive norm: inrole(p1, r̂1) ∧ inrole(p2, r̂2) ∧ inrole(q, r̂) ∧ (t ∈ t̂) ∧ θ ∧ ψ

negative norm: inrole(p1, r̂1) ∧ inrole(p2, r̂2) ∧ inrole(q, r̂) ∧ (t ∈ t̂) ∧ θ → ψ

The syntactic forms of positive and negative norms are depicted above, where θ is an

agent constraint and ψ is a temporal condition. An agent constraint θ is a formula free

of temporal operators with free variables among p1, p2, and q. It expresses a relation

among the sender, the recipient, and the subject, for example, that the sender and

the subject are one and the same agent. A temporal condition ψ formalizes the notion

of a principle of transmission and is a temporal formula with free variables among

p1, p2, q, m, and t. It requires particular future actions to occur and particular past

actions to have occurred (see Section 4.3 for concrete examples of norms).

One subtle consequence of the construction of Formula (3.1) is the treatment of

attributes. Each individual norm applies to a downwardly closed set of attributes

(downward in the information ordering on attributes induced by the computation

rules). This captures the usual implication that the statement “allow disclosure of

postal address” also allows the disclosure of postal codes. The formula universally

quantifies over attributes because each communicated attribute must have a norma-

tive basis. The usual “upwards” inheritance of deny rules arises naturally here from

the universal quantification over attributes and the downward closure of message

contents. Suppose, for example, a norm denies the disclosure of postal codes. If one

agent attempts to send a message containing a postal address, that message must

also contain a postal code and when the attribute “postal code” is considered by the

universal quantifier, the formula will forbid the disclosure.

Chapter 4

Evaluation of the Logic

In this chapter, we evaluate the Logic of Privacy and Utility (LPU) from the preceding

chapter along three dimensions. First, we examine the algorithmic properties of con-

sistency, entailment, combination, and compliance. Second, we compare the expres-

siveness of LPU with existing access control and privacy languages. Third, we express

the main privacy provisions of three privacy regulations, HIPAA [54], COPPA [35],

and GLBA [36], in the language. Portions of this chapter appear in [14].

4.1 Policies, Combination, and Compliance

A privacy policy regulates what flows of information are permitted between agents

in various roles. A policy is a conjunction of contexts, requiring the norms of each

context to be respected. For example, if Alice plays roles in both a bank and a

hospital, she must act in accordance with the informational norms of both contexts.

Def. A privacy policy is a conjunction of formulas of the form (3.1).

We define below methods for evaluating privacy policies, both independently and in

comparison with other policies. In addition, we define a notion of privacy compliance

for an action. These problems can be solved using standard tools because they are

formulated in LTL.

39

CHAPTER 4. EVALUATION OF THE LOGIC 40

4.1.1 Consistency

A policy is consistent if it is possible for communicating agents to respect the policy.

Inconsistent policies are not useful because they prescribe norms that agents cannot

possibly satisfy. As defined, privacy policies can be satisfied trivially by agents who

refrain from communicating any attributes. To focus on substantive consistency, we

also include a temporal formula, a purpose, to compel communication, requiring, for

example, that eventually a bank customer receives his account balance.

Def. A privacy policy θ is consistent with a purpose α if there exists a trace σ such

that σ |= θ ∧ α.

Because the satisfiability of LTL formulas is a well-studied problem, we can apply a

set of known algorithmic results [64, 30, 48] to evaluate consistency of privacy policies.

By assuming our carrier sets are finite, we are able to rewrite universal and existential

quantifiers as finite conjunctions and disjunctions in Propositional LTL (PLTL).

Theorem 1. Policy consistency can be decided in PSPACE.

Let β be an LTL formula expressing the knowledge evolution constraints on traces.

The proof idea is to propositionalize θ∧α∧β and decide its satisfiability in PSPACE

(with respect to formula length and the size of the carrier sets). Although the worst-

case complexity of satisfiability is PSPACE, there are efficient algorithms for several

syntactic classes of formulas [30]. Furthermore, there are tools that work well in

practice, such as the widely used SPIN model-checker [37].

4.1.2 Entailment

Another metric for evaluating a privacy policy is to compare it against another policy.

For example, a hospital’s privacy policy should not allow information flows prohibited

by HIPAA.

Def. A privacy policy θ1 entails a policy θ2 if the LTL formula θ1 → θ2 is valid over

traces.

CHAPTER 4. EVALUATION OF THE LOGIC 41

A hospital’s privacy policy should entail HIPAA (which in turn should entail the

norms of the societal health care context). Entailment generalizes the notion of

policy refinement defined for EPAL in [13, 16]. These previous definitions are lattice-

theoretic and require direct reasoning about upwards and downwards inheritance. Our

simpler model-theoretic definition is made possible by representing policies as logical

formulas that properly quantify over attributes. Here, policy entailment reduces to

standard logical implication.

Theorem 2. Policy entailment can be decided in PSPACE.

This theorem is proved by observing that the formula θ1 → θ2 is valid over traces just

in case ¬(θ1 → θ2) ∧ β is not satisfiable, where β is an LTL formula for knowledge

constraints. Deciding policy entailment for our policies is more difficult than for

other privacy languages because we directly model temporal constraints instead of

abstracting them into uninterpreted “obligations” (see Section 4.2.3).

Policy entailment also leads to notions of policy combination, as in [17, 12]. Entail-

ment as implication gives rise to combination as logical conjunction and disjunction.

This replaces the previous complex lattice-based definitions of other privacy lan-

guages. Policy combination is simpler in this framework because we represent poli-

cies by carefully constructed logical formulas and not by functions, as in XACML and

EPAL. Representing policies as functions loses essential information about whether

a requirement was inherited from another attribute. Representing policies as logical

formulas retains the inheritance information, simplifying combination.

4.1.3 Compliance

Finally, we address the issue of compliance: given the sequence of past communica-

tions, does the policy permit a contemplated communication and, if so, what future

requirements are incurred? This question has both a weak and a strong formulation.

The weak formulation requires the contemplated action to satisfy all the necessary

present conditions imposed by the policy. These necessary conditions are tracked

using a standard PLTL construction called the tableau [48]. The tableau of a PLTL

CHAPTER 4. EVALUATION OF THE LOGIC 42

formula is constructed by syntactically separating the present and future require-

ments. The future requirements characterize the sequences of actions that complete

a finite trace to a satisfying infinite trace.

Def. Given a finite past history σ, an action a weakly complies with privacy policy

θ if σ · a is a path in the tableau of θ that starts at an initial θ-atom. The future

requirements of σ · a is the LTL formula ψ such that, for all traces σ′,

σ′ |= ψ if, and only if, σ · a · σ′ |= θ.

Weak compliance ensures that each action taken by agents locally satisfies the privacy

policy. However, a weakly compliant action could incur unsatisfiable future require-

ments. Weak compliance can be decided (and future requirements computed) using

efficient techniques from LTL run-time verification [59].

Theorem 3. Weak compliance and future requirements can be computed in polyno-

mial time.

In strong compliance, the information system ensures that agents can actually meet

their future requirements while adhering to the policy. Note that previous privacy

languages, such as EPAL, are able to determine only weak compliance because they

lack a rich enough model of temporal conditions to determine the satisfiability of

future requirements.

Def. Given a finite past history σ, an action a strongly complies with a privacy policy

θ if there exists a trace σ′ such that σ · a · σ′ |= θ.

Theorem 4. Strong compliance can be decided in PSPACE.

The complexity of checking strong compliance is in PSPACE because it involves

checking for satisfiability. However, because the typical use of this algorithm will be

at each point in a trace (for example in a hospital information system), it is natural to

ask whether it is possible to reduce the complexity of checking whether each action is

compliant by doing more work at the beginning of the execution. If weak compliance

for a policy implies strong compliance, an information system need only require weak

compliance (which can be computed efficiently) in order to achieve strong compliance.

CHAPTER 4. EVALUATION OF THE LOGIC 43

Model Sender Recipient Subject Attributes Past Future Combination
RBAC Role Identity × × × × •

XACML Flexible Flexible Flexible ◦ × ◦ •
EPAL Fixed Role Fixed • × ◦ ×
P3P Fixed Role Fixed • ◦ × ◦
LPU Role Role Role • • • •

Figure 4.1: Comparison of various privacy languages. The symbol × indicates the
feature is absent from the language, ◦ indicates partial or limited functionality, and
• indicates the feature is fully functional. Note, [12] gives an extension of EPAL that
is closed under combination.

Theorem 5. Given a privacy policy θ, it can be decided whether weak compliance for

θ implies strong compliance in exponential space.

The main idea behind the proof is to construct the automaton for θ and check that

there is a path from every reachable state to a strongly connected component.

4.2 Comparison with Other Models

In this section, we compare LPU with traditional Role-Based Access Control (RBAC),

the eXtensible Access Control Markup Language (XACML), the Enterprise Privacy

Authorization Language (EPAL), and the Platform for Privacy Preferences (P3P).

LPU generalizes these existing models in two key ways. First, LPU includes an ex-

tensive language for defining temporal conditions, improving the rudimentary future

“obligations” of XACML and EPAL. Second, LPU correctly handles temporal con-

ditions associated with negative norms (denying rules). Temporal conditions can be

attached to denying rules in XACML and EPAL, but the resulting semantics are

murky. Our findings are summarized in Figure 4.1.

4.2.1 Role-Based Access Control

RBAC (see, for example, [20]) is an access control model in which access rights are

specified in terms of roles. LPU generalizes RBAC by specifying more parameters

by role, containing a notion of attribute and data subject, and including temporal

CHAPTER 4. EVALUATION OF THE LOGIC 44

conditions. RBAC can express policies about arbitrary actions, whereas LPU, as

currently formulated, is concerned solely with communication actions. LPU replaces

the “object” of RBAC with a recipient principal, enabling the “actee” (object or

recipient) to be specified by a role. RBAC rules are positive and negative norms of

the following forms, respectively:

Allow: inrole(p1, r̂1) ∧ (p2 = p̂2)

Deny: inrole(p1, r̂1) ∧ (p2 = p̂2)→ ⊥

Notice RBAC lacks the subject q and attribute t. Temporal conditions are also absent.

“Deny” rules are expressible in LPU by negative norms with ⊥, the unsatisfiable

formula.

The key reason RBAC is insufficient for privacy is that it lacks the notion of an

attribute. Suppose a doctor reads a patient’s medical file and then sends an email

to his broker. From an RBAC perspective, nothing untoward has occurred. Both

actions, reading the file and sending the email, are (presumably) permitted by the

policy. However, a privacy breach has occurred if the doctor includes sensitive medical

information about another patient in his email. To distinguish the appropriate from

the inappropriate, it is essential to recognize the attributes communicated by each

action. In other words, RBAC is insufficient for privacy because it lacks the “contains”

relation.

Several access control languages, such as Binder [31] and RT [46], extend RBAC

using Datalog. Typically, these languages use only positive rules and contain neither

temporal conditions nor a notion of the subject of a piece of information. Cassan-

dra [18], a sophisticated access control language with denying rules, has been applied

to electronic health records in the United Kingdom. In that study, consent was

captured through role activation: a patient consents to treatment by activating a

“consent-to-treatment” role. Future temporal constraints, as well as notions of com-

puting attributes, are absent.

CHAPTER 4. EVALUATION OF THE LOGIC 45

4.2.2 Extensible Access Control Markup Language

The Extensible Access Control Markup Language [7] is a flexible language for ex-

pressing access control policies. XACML’s extension mechanism enables XACML to

capture a wide variety of access control constructs. To make meaningful statements

about the expressiveness of XACML, we restrict our attention to policies express-

ible by simple extensions to the base XACML language. In particular, we abstract

XACML’s targets as elements of a Boolean algebra over a set of requests and consider

only the built-in combination algorithms.

XACML lacks first-class temporal conditions. When an XACML policy reaches

a policy judgment, it can include in its response an “obligation,” a symbol to be

interpreted at the point of policy enforcement. These uninterpreted symbols can be

used to represent future requirements. Obligations, however, prevent the semantics

of an XACML policy from being fully specified by the policy itself (because the

policy relies on the surrounding environment to give the obligations meaning). Past

conditions can also be expressed in XACML by encoding state information into the

“request context,” additional information passed to the policy evaluation engine.

However, using this feature to capture more complex states than “opt-in” and “opt-

out” is awkward.

XACML is unable to correctly capture attributes [6], especially in connection with

denying rules (negative norms). The difficulty arises because XACML conceives of

a policy as a function from requests to responses. XACML policies are structured

as combinations of simple subpolicies, where combination is computed point-wise on

the functions represented by the subpolicies. This fails for attributes because the

effect of combination can be non-local (due to “upward” inheritance). The combined

response for two policies on a request is not necessarily determined by the responses

of the subpolicies on that request. LPU avoids this by representing and combining

policies logically.

CHAPTER 4. EVALUATION OF THE LOGIC 46

4.2.3 The Enterprise Privacy Authorization Language

The Enterprise Privacy Authorization Language is expressly designed for expressing

enterprise privacy policies [11, 63]. EPAL policies are concerned with a single sender

(the enterprise itself) and a single subject role [41]. EPAL has the same limitations

as XACML on its temporal conditions.

EPAL requests are elements of a Cartesian product of trees representing roles,

attributes, purposes, and actions. The “role” coordinate represents the role of the

recipient. The “purpose” coordinate is not captured directly in LPU. However, these

purposes can be simulated in LPU (see below). Finally, EPAL policies are concerned

with general actions, not just with communication actions, as in RBAC. With the

exception of purposes and non-communication actions, LPU captures EPAL policies

using positive and negative norms of the following forms, respectively:

(p1 = p̂1) ∧ inrole(p2, r̂2) ∧ (t ∈ t̂) ∧ ô

(p1 = p̂1) ∧ inrole(p2, r̂2) ∧ (t ∈ t̂)→ ⊥

The sender agent p̂1 is fixed for every norm in a single policy. The symbol ô is a

propositional letter that represents an uninterpreted future “obligation,” similar to

how obligations are represented in XACML. EPAL structures these obligations with

a subsumption relation.

LPU improves on EPAL obligations in two respects. First, obligations are ex-

pressed in temporal logic (as in [39]), the same logic as the policy itself. Thus, tools

can interpret temporal conditions and determine, for example, whether or not it is

possible for an agent to discharge his or her future obligations while adhering to the

policy. Second, the temporal conditions in LPU can speak about the past as well as

the future, enabling policies that permit information flows in virtue of past actions. In

LPU, the subsumption relation on temporal conditions arises naturally as the logical

implication of temporal formulas. Future obligations in the form of a list of future

actions that must be performed are present in the policy specification language Pon-

der [29]. These obligations are richer than EPAL’s uninterpreted obligations, but are

restricted to F conditions, failing to capture the FG condition in COPPA norm.

CHAPTER 4. EVALUATION OF THE LOGIC 47

EPAL policy authors can attach obligations to denying rules. However, the seman-

tics of such obligations are dubious: the policy engine responds that a contemplated

action both is denied and incurs an obligation, but is the obligation incurred if the

requesting agent does not perform the contemplated action? LPU resolves this diffi-

culty by weakening the notion of a denying rule to that of a negative norm, a formula

of the form ϕ → ψ. Negative norms do not forbid actions described by ϕ, but in-

stead forbid actions described by ϕ that violate the temporal condition ψ. Complete

prohibitions can be expressed by instantiating ψ with ⊥.

EPAL purposes in LPU. In EPAL, each action is conducted for some purpose.

An EPAL policy can permit an action for a particular purpose and also deny the same

action for a different purpose. For example, a health web site might be permitted to

analyze visitor health information for medical purposes, but might not be permitted

to analyze the same health information for marketing purposes. LPU can capture this

notion by decomposing large agents into several smaller agents, one for each purpose.

For example, the monolithic health web site could be decomposed into a medical

agent and a marketing agent. EPAL purposes could then be expressed in LPU by

restricting communication between the constituent agents.

4.2.4 The Platform for Privacy Preferences

The Platform for Privacy Preferences (P3P) is a privacy language intended for use

by web site operators in informing their visitors of their data practices [27, 58]. P3P

contains only positive norms and restricted temporal conditions. A single P3P pol-

icy is restricted to a single sender (the web site) and a single subject role (a web

site visitor). These restrictions impair the use of P3P as a general-purpose privacy

language. For example, to state that a web site complies with COPAA, a web site

operator must employ a P3P extension [26] and make the policy statement COPPA

status="compliant". Temporal conditions in P3P are limited to opt-in, opt-out,

and true. P3P statements correspond to positive norms of the following form:

(p1 = p̂1) ∧ inrole(p2, r̂2) ∧ inrole(q, visitor) ∧ (t ∈ t̂) ∧ ψ

CHAPTER 4. EVALUATION OF THE LOGIC 48

where ψ represents “opt-in,” “opt-out,” or no temporal condition. The lack of nega-

tive norms simplifies P3P at the cost of expressiveness. The fixed form of the opt-in

and opt-out conditions is restrictive, preventing even minor variations such as the

parental “grant-consent” and “revoke-consent” idiom found in COPPA.

P3P provides for privacy preference languages that a web surfer can use to filter

out web sites with unwanted data practices. These preference languages highlight

another difference between P3P and LPU: all P3P policies inhabit a single global

context. A web surfer cannot specify different preferences for medical web sites than

for financial web sites. This forces web surfers to resort to a “lowest common de-

nominator” preference. Both the preference languages APPEL [27] and XPref [3] can

express negative preferences, but such preferences are not respected in the full P3P

system [16].

4.3 Expressing Privacy Regulations

In this section, we evaluate the expressiveness of the logic of privacy and utility by

showing how to represent some commonly discussed privacy regulation. We intend

our framework to express organizational privacy policies as well as regulation, but

we focus on regulation in this chapter for concreteness. We can capture most of the

privacy notions embedded in the laws we examine, and conversely the laws we examine

exercise most of the features of our model. We regard this as evidence that the logic

has roughly the correct level of expressiveness to represent generally accepted notions

of privacy.

We consider three pieces of regulation: the Health Insurance Portability and Ac-

countability Act (HIPAA), the Children’s Online Privacy Protection Act (COPPA),

and the Gramm–Leach–Bliley Act (GLBA). The distinction between positive and

negative norms surfaces in the different approaches taken by these laws. At a high

level, HIPAA forbids disclosure of protected health information except in enumer-

ated capacities, whereas COPPA and GLBA forbid enumerated information flows.

Temporal conditions attached to negative norms are common in COPPA and GLBA.

The mishandling of negative temporal conditions in other frameworks hampers their

CHAPTER 4. EVALUATION OF THE LOGIC 49

ability to capture these privacy laws correctly, whereas LPU is able to capture both

flavors of policy in a unified logical framework.

4.3.1 The HIPAA Privacy Rule

The HIPAA Privacy Rule regulates the transmission of “protected health informa-

tion” (phi), by covered entities, such as hospitals, doctors, and insurance compa-

nies [54]. HIPAA largely forbids the disclosure of health information except to in-

dividuals or organizations acting in particular roles. HIPAA contains many privacy

provisions, most of which can be expressed directly as positive transmission norms.

We present a few representative examples.

inrole(p1, covered-entity) ∧ inrole(p2, individual) ∧ (q = p2) ∧ (t � phi) (4.1)

The norm above allows a covered entity to communicate phi about an individual

to that individual. This norm allows Dr. Alice to show Bob an x-ray of his broken

leg. It does not allow, however, Dr. Alice to show Bob’s x-ray to Carol. Moreover,

it does not permit x-ray technician Debbie to give the x-ray to Dr. Alice. For that

communication, HIPAA provides another norm:

inrole(p1, covered-entity) ∧ inrole(p2, provider) ∧ inrole(q, patient) ∧ (t � phi)

Dr. Alice is not only a covered entity, but also, more specifically, a health care provider,

someone directly involved in the care of a patient. Here, Debbie plays the role of

covered entity and is permitted to give Bob’s x-ray to Dr. Alice (Bob plays the role

of patient).

Although the bulk of HIPAA consists of positive norms dealing with the attribute

phi, HIPAA does contain a negative norm dealing with a component of phi : psy-

chotherapy notes. The rule provides special protection for the disclosure of psy-

chotherapy notes, even to the individual whom the notes are about. In particular,

CHAPTER 4. EVALUATION OF THE LOGIC 50

HIPAA contains a negative norm that prevents a covered entity from disclosing psy-

chotherapy notes to the subject of the notes without the prior approval of a psychia-

trist:

inrole(p1, covered-entity) ∧ inrole(p2, individual) ∧ (q = p2)∧

(t � psychotherapy-notes)→ F−∃p : P. inrole(p, psychiatrist)∧

send(p, p1, approve-disclose-psychotherapy-notes) (4.2)

The interplay between the positive and negative norms is subtle. One positive

norm (4.1) permits the disclosure of psychotherapy notes, but a negative norm (4.2)

prevents it (unless approval is obtained). These norms are not contradictory because

the positive norm does not require the disclosure. Moreover, even after approval is

received (satisfying the negative temporal condition), the covered entity would not

be allowed to disclose the notes without the positive norm.

HIPAA contains specific norms for directories of facilities such as hospitals. Specif-

ically, it provides that a covered entity may “disclose the individual’s [general] condi-

tion and location within the facility to anyone asking for the individual by name” [54].

This can be expressed as a positive norm:

inrole(p1, covered-entity) ∧ inrole(p2, individual)∧

inrole(q, individual) ∧ (t � condition-and-location)∧

F−∃m′ : M. send(p2, p1,m
′) ∧ contains(m′, q, name)

The rule also contains a provision allowing members of the clergy to obtain directory

information. This is expressed in the norm below, where directory-information is

an attribute that contains (formally can be used to compute) the individual’s name,

general condition, religious affiliation, and location within the facility.

inrole(p1, covered-entity) ∧ inrole(p2, clergy)∧

inrole(q, individual) ∧ (t � directory-information)

CHAPTER 4. EVALUATION OF THE LOGIC 51

The use of such information by the clergy is subject to further norms, but this is

outside the scope of HIPAA.

De-identified Health Information. Most of the privacy provisions of the HIPAA

Privacy Rule can be expressed using norms of transmission. Some provisions, however,

are outside the LPU model. In particular, HIPAA provides that covered entities can

disclose “de-identified health information” without regard to the other provisions of

the rule. In our formalization of contextual integrity, every attribute is “identified”

in virtue of being associated with an agent. Although we have not examined this in

detail, we expect that an extended model with group attributes (attributes about a

set of agents) could capture de-identified attributes. The relation between individual

attributes and de-identified attributes has been studied extensively (e.g., [4, 33, 66]).

4.3.2 Children’s Online Privacy Protection Act (COPPA)

COPPA protects the personal information children communicate to web sites [35]. It

differs from HIPAA in two ways. First, COPPA does not contain an enumeration

of positive norms. Instead, it contains two negative norms that restrict otherwise

permissible flows of information. Second, temporal conditions play a central role in

COPPA. The temporal conditions require web sites that collect protected information

from children to respond in a particular way to messages from parents.

COPPA applies when a child sends individually identifiable information, protected-

info, about him- or herself to a web site operator over the Internet. The two central

negative norms of COPPA have a similar form, differing only in their temporal con-

ditions. Whenever a child sends a web site his or her protected information, the web

site operator is bound to follow both temporal conditions, one requiring “parental

consent” and another providing a “right of access.”

inrole(p1, child) ∧ inrole(p2,web-site) ∧ (q = p1) ∧ (t � protected-info)→

∃p : P. inrole(p, parent) ∧ ¬ send(p, p2, revoke-consent)S

(send(p, p2, grant-consent) ∧ F− send(p2, p, privacy-notice))

CHAPTER 4. EVALUATION OF THE LOGIC 52

The negative norm above requires web site operators to obtain parental consent be-

fore collecting protected information from children. When a child sends protected

information to a web site, a parent must have previously received a privacy notice

from the web site operator, granted consent to the web site operator, and not since

revoked that consent. Notice the strong form of “since” is required here to ensure

that the parent actually granted consent.

inrole(p1, child) ∧ inrole(p2,web-site) ∧ (q = p1) ∧ (t � protected-info)→

G∀p : P. inrole(p, parent) ∧ send(p, p2, request-information)→

F(send(p2, p, privacy-notice) ∧ send(p2, p,m))

The negative norm above contains a temporal condition that requires web site oper-

ators to furnish parents with a privacy notice describing their information practices

as well as the specific information they have collected from the child. This reactive

condition is easily expressed using the GF modality.

The first temporal condition is concerned with the past, that a parent has given

consent, whereas the second condition is concerned with the future, that the web site

operator reacts correctly to parental requests. COPPA requires web site operators

to verify that they are indeed communicating with one of the child’s parents before

disclosing the child’s protected information. Such verification is represented in our

model by assigning the role parent to the appropriate agents. COPPA also requires

the operator to delete protected information in its possession upon receiving revoke-

consent. Our model does not capture “forgetting” actions, but such actions can be

included in the model, at the cost of complexity.

4.3.3 Gramm–Leach–Bliley Act (GLBA)

The Financial Modernization Act of 1999, commonly referred to as the Gramm–

Leach–Bliley Act or GLBA, contains privacy provisions limiting how financial insti-

tutions can handle the non-public personal information, npi, of their customers and

CHAPTER 4. EVALUATION OF THE LOGIC 53

consumers [36]. Broadly, GLBA requires financial institutions to inform their cus-

tomers of their privacy practices and to allow customers to “opt-out” of some kinds

of information disclosures.

Financial institutions are required to send their customers privacy notices every

year as long the customer relationship lasts. Without numerical notions of time, LPU

cannot express that the notices must be delivered annually. Instead, the negative

norm below requires institutions to periodically send privacy notices.

inrole(p1, customer) ∧ inrole(p2, institution) ∧ (q = p1) ∧ (t � npi)→

F send(p2, p1, privacy-notice)W¬ inrole(p1, customer)

In addition to a customer role, GLBA distinguishes a consumer role. GLBA’s re-

quirements on interacting with consumers are less strict than its requirements on

interacting with customers. Institutions are required to notify consumers of their

privacy practices only if they share the consumer’s npi with non-affiliated companies,

and they may do so before or after the disclosing npi. The negative norm below makes

essential use of the three different roles (sender, recipient, and subject), as well as

both past and future modalities in its temporal condition.

inrole(p1, institution) ∧ inrole(p2, non-affiliate) ∧ inrole(q, consumer) ∧ (t � npi)→

F send(p1, q, privacy-notice) ∨ F− send(p1, q, privacy-notice)

Both consumers and customers can “opt-out” of the sharing of npi with non-affiliated

companies. The norm below expresses the provision for consumers, and GLBA also

contains an analogous non-affiliate opt-out norm for customers.

inrole(p1, institution) ∧ inrole(p2, non-affiliate) ∧ inrole(q, consumer) ∧ (t � npi)→

¬F− send(q, p1, opt-out-of-non-affiliate)

Consumers and customers also have the option of opting out of some kinds information

sharing between institutions and their affiliates, such the sharing of credit reports and

CHAPTER 4. EVALUATION OF THE LOGIC 54

application information. The norm below expresses the provision, and GLBA contains

a similar norm for application information. GLBA contains some exceptions to these

norms, but we omit those here for clarity.

inrole(p1, institution)∧inrole(p2, affiliate)∧inrole(q, consumer)∧(t � credit-report)→

¬F− send(q, p1, opt-out-of-affiliate)

Much of the consternation about GLBA revolves around the complex definition of

which companies are affiliates and what precisely constitutes non-public personal

information [34]. Our formalization of these norms sidesteps these issues by taking

the role affiliate and the attribute npi to be defined exogenously: the judgments as

to which companies are affiliates and which communications contain npi are made

in the preparation of a trace history. The machinery of the model then classifies this

trace history as respecting or as not respecting the norms of transmission.

The use of negative norms in the expression of GLBA is essential: replacing the

negative norms with their positive duals fails to express GLBA. Consider Alice, who

is both a customer and a consumer of financial institution FirstCyber. In the negative

formulation of GLBA, if she sends npi to FirstCyber, FirstCyber must periodically

send her privacy notices. In the attempted positive formulation, however, if she sends

npi to FirstCyber, FirstCyber need not periodically send her privacy notices. The

disjunctive character of positive norms enables FirstCyber to choose, for each com-

munication, whether to regard Alice as a customer or as a consumer. In the negative

formulation, the conjunctive character of the negative norms requires FirstCyber to

treat Alice as both a customer and a consumer.

Chapter 5

Utility and Business Processes

In this chapter, we expand the discussion of the Logic of Privacy and Utility (LPU)

to encompass the utility goals of an organization. Our notion of utility makes use

of the strategy quantifier in the logic to determine if a coalition of agents can bring

about some useful outcome from a privacy-constrained workflow. We consider both

the design-time evaluation of an organizational workflow and the run-time auditing

of the workflow’s execution. Portions of this chapter appear in [15].

5.1 Workflows and Responsibility

A workflow is a division of responsibility among human agents and a mechanical work-

flow engine. By assigning responsibilities to human agents, workflows can achieve

privacy and utility goals beyond the capabilities of mechanical systems. We develop

general design principles and desiderata using abstract workflows, which are collec-

tions of formulas specifying agent and engine responsibilities, and specific auditing

algorithms for practical workflows like MyHealth based on communication graphs.

Abstract Workflows. Abstractly, a workflow is an LTL sentence ϕ together with

an LTL formula ϕr(x) for each role r. The mechanical workflow engine is responsible

for achieving ϕ and a human agent p in role r is responsible for achieving ϕr(p).

Because the workflow engine can only prevent communication initiated by human

55

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 56

agents, it can enforce only safety properties (properties that fail at a finite time).

Also, as a mechanical agent, the workflow engine must authorize communication

based on message tags (and not the inaccessible message contents).

Def. A workflow is feasible if ϕ is a safety formula1 without the contains predicate

and G |= ∀p.ϕ ∧ inrole(p, r)→ 〈〈p〉〉ϕr(p), for every role r.

In a feasible workflow, agents have local strategies for living up to their responsibilities

and, thus, know which actions or inaction are responsible based on their observations

of previous actions (assuming the workflow engine is functioning property). Moreover,

if an agent is responsible for sending a message, feasibility ensures that the agent will

be able to send the message.

Graph-based Workflows. The MyHealth workflow depicted in Section 6.1 is a

practical kind of workflow based on a workflow graph, a set of nodes R, the roles of

the workflow, and a function T such that T (r1, r2) ⊆ T for all r1, r2 ∈ R, where T
is the set of attributes. The workflow engine permits a message m to be sent from

an agent in role r1 to an agent in role r2 if, and only if, tags(m) ⊆ T (r1, r2). The

responsibility of the workflow engine is the conjunction over r1, r2 ∈ R of

G∀p1, p2, q,m. inrole(p1, r1) ∧ inrole(p2, r2)∧

send(p1, p2,m) ∧ tagged(m, q, t)→ t ∈ T (r1, r2).

The workflow engine is stateless and distributed because the decision about whether

to block a communication is based only on the current action, not on past or non-

local actions. The responsibilities of human agents are divided into two parts: tagging

responsibilities and progress responsibilities. If an agent is permitted to send a par-

ticular type of information, the agent is responsible for attaching tags for that type

to all messages the agent sends that contain that type of information. The tagging

1There is a standard syntactic definition of safety formulas [48].

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 57

responsibility for role r is the conjunction over t ∈ T (r, ∗) of

G∀p2, q,m. send(x, p2,m) ∧ contains(m, q, t)→ tagged(m, q, t).

In MyHealth, nurses are responsible for attaching health-question, appt-request , and

health-answer tags to messages. Tagging constraints are feasible because agents

are free to select the tags for messages they send. Progress responsibilities require

agents to eventually send messages. Progress responsibilities are essential in achiev-

ing the liveness requirements of privacy goals (such as notification requirements)

and in achieving utility goals. A progress responsibility is a formula of the form

G∀~x.ψ → Fθ, where ψ and θ are past formulas. For example, in MyHealth doctors

have the following progress responsibility.

G∀p, q,m. send(p, x,m) ∧ contains(m, q, health-question)→

F∃m′. contains(m, q, health-answer) ∧ send(x, q,m′)

We do not make explicit how m′ depends on m because m′ is created by a human

agent, not by a piece of code. A more detailed model might bind the health answer to

the question by way of a transaction identifier or a more explicit notion of causality.

5.2 Privacy and Utility in Workflow Design

Organizations design workflows to accomplish particular tasks while complying with

regulation and privacy policies. This section contains algorithms for determining if a

workflow design achieves these utility and privacy goals provided all agents act respon-

sibly. If several workflows achieve privacy and utility, many privacy advocates [49]

recommend deploying a workflow that minimizes the information disclosed to agents.

We formulate a design criterion called minimality that makes this intuition precise.

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 58

5.2.1 Privacy

Many of the privacy provisions found in US regulation can be expressed in LPU (see

Section 4.3). For example, one of MyHealth’s privacy goals, derived from HIPAA, is

that no patient should learn answers to another patient’s health questions.

G∀p1, p2, q,m. send(p1, p2,m) ∧ inrole(p2, patient)∧

contains(m, q, health-answer)→ q = p2

Responsible executions of a workflow (ϕ, ϕR) is characterized in LTL as follows.

agents-responsible ≡ ϕ ∧
∧
r∈R

∀p. inrole(p, r)→ ϕr(p)

If G |=LTL agents-responsible → privacy-policy , then responsible agents will achieve a

privacy goal privacy-policy . However, this requirement imposes a design constraint

only on agent responsibilities, not on the responsibility of the workflow engine. When

the tags are correct, the workflow engine is capable of enforcing safety properties but

is incapable of enforcing liveness properties. The executions of the workflow with

correct tags is expressed by the LTL formula

tags-correct ≡ ϕ ∧ ∀p1, p2, q,m, t. send(p1, p2,m)→

(tagged(m, q, t)↔ contains(m, q, t)).

A workflow achieves a privacy goal if responsible agents fulfill the privacy goal and

the workflow engine fulfills the safety component of the privacy policy when operating

with correct tags.

Def. A workflow achieves a privacy goal privacy-policy if

G |=LTL tags-correct U agents-responsible → privacy-policy .

Algorithmically, we consider the propositional case in which there are finite numbers

of agents, messages, attributes, and roles.

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 59

Theorem 6. It can be decided whether a workflow achieves a privacy goal using space

polynomial in the description of the workflow and the number of agents.

In practice, if an organization has a large number of agents, we suggest the standard

practice of evaluating whether a workflow achieves privacy on a smaller model in

which the model-checking problem is tractable.

5.2.2 Utility

A workflow is useful if some execution accomplishes a task, although that task need

not be accomplished in every execution. A workflow achieves a utility goal if some

of the agents have a strategy for accomplishing the task. Formally, a utility goal for

agents in a vector of roles ~r is a sentence of the form

∀~p. inrole(~p, ~r)→ 〈〈~p〉〉ψ,

where ψ, the task, is an LTL formula. For example, one utility requirement in My-

Health is that patients can receive answers to their health questions.

∀p. inrole(p, patient)→ 〈〈p〉〉F∃p1,m. send(p1, p,m) ∧ contains(m, p, health-answer).

A workflow achieves a utility goal utility-goal if the agents have a strategy for respon-

sibly accomplishing their task if the other agents act responsibly, formalized as the

ATL* entailment G |= agents-responsible → utility-goal .

In general, deciding whether a workflow satisfies this condition is undecidable [5]

because G is a game of imperfect information: an agent’s strategy is based only on

the messages that the agent has sent or received, not on messages exchanged between

other agents. For example, a patient’s strategy for obtaining an answer to his or her

health question cannot depend on whether messages have been exchanged between

a doctor and a nurse. To avoid undecidability, we use a sound approximation based

on local communication games. This approximation has proven adequate for the

examples we have examined thus far.

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 60

Local Communication Game. Instead of checking the formula in the full game

G, we check the formula in the local communication game for agent p, Gp, a game

of perfect information where we can apply the standard model-checking algorithm

for ATL*. Checking the formula in the local model is sound (but not complete)

for a particular syntactic class of formulas that includes utility goals. The local

communication game Gp is defined from the full communication game G by way of

∼p, the smallest equivalence relation such that κ1 ∼p κ2 if κ1
a−→ κ2, where κ1 and κ2

are knowledge states of G and a is invisible to p.

Proposition 7. κ̂ ∼p κ implies κ̂p = κp, for all knowledge states κ̂ and κ.

The states of Gp are the equivalence classes [κ]p of knowledge states κ of G under ∼p.
An action is available in [κ]p if p considers the action possible. For all sets of actions

A, [κ]p
A−→ [κ′]p if there exist κ̂ ∼p κ and κ̂′ ∼p κ′ with κ̂

A−→ κ̂′.

Lemma 8. For all sets of actions A and all knowledge states κ, κ1, and κ2,

[κ]p
A−→ [κ1]p and [κ]p

A−→ [κ2]p implies κ1 ∼p κ2.

Proof. It suffices to prove the statement for A containing a single action. If p is not

the recipient of a send message, then [κ1]p = [κ2]p = [κ]p. If p is a recipient, then

κ1(p) and κ2(p) and the other agents can invisibly exchange messages to equalize their

knowledge as well, yielding κ1 ∼p κ2.

The main idea of the proof is contained in Lemma 9, which connects the truth value

of visible formulas in Gp with their truth value in G. The atomic formulas visible to

agent p are send(p, ∗, ∗), send(∗, p, ∗), inrole(∗, ∗), contains(∗, ∗, ∗), and tagged(∗, ∗, ∗),
where ∗ is an arbitrary term. A formula is visible to p if, and only if, all its atomic

formulas are visible to p. The truth values of formulas visible to p are determined by

the view of p.

Lemma 9 (Soundness). For all LTL formulas ϕ that are visible to p,

Gp |= 〈〈p〉〉ϕ implies G |= 〈〈p〉〉ϕ.

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 61

Proof Sketch. If p has a strategy to force ϕ in Gp, then p must also have a strategy

to force ϕ in G because the set of moves available to p’s opponents in G is a subset of

the set of moves available to p’s opponents in Gp. Fix a strategy Γp for p that forces ϕ

in Gp. For every finite p-view π � p of G, let Γ(π � p) = Γp([π]p). Γ is a local strategy

for p in G that forces ϕ because ϕ is visible to p.

We can now state a sound algorithm for determining whether G |= ψ → 〈〈p〉〉ϕ for

propositional LTL formulas ψ and ϕ.

Algorithm 10. Let G be the labeled transition system of G and let Aψ be the Büchi

automata for ψ (see, for example, [48]). Construct Gψ as the conjunction of the

automata G and Aψ and use it as the frame of the concurrent game structure Gψ. Let

Gψp be the local communication game. Report true if Gψp |= 〈〈p〉〉ϕ (determined using

standard ATL* model checking, i.e. [5]).

Theorem 11. Algorithm 10 is sound for deciding whether

G |= agents-responsible→ utility-goal.

Proof Idea. Intuitively, Algorithm 10 uses deduction to translate the problem into

G, agents-responsible |= utility-goal and then applies Lemma 9 to use the standard

ATL* model-checking algorithm. Each step in the algorithm preserves soundness, so

the entire algorithm is sound.

5.2.3 Minimal Workflow

The Markle Foundation [49], among many others, advocates the principle of mini-

mum necessary disclosure for systems processing personal information. Under this

principle, each agent should receive only the information needed for the workflow to

achieve its utility goals. We begin to make this notion precise by inducing a partial

order relation on workflows.

Def. One workflow W1 = (ϕ1, ϕR) is at least as restrictive as another workflow

W2 = (ϕ2, ϕR), written W1 ≤ W2, if G |= ϕ1 → ϕ2.

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 62

If W1 ≤ W2, the workflow engine permits agents to learn no more information in

W1 than in W2. For graph-based workflows, W1(R, T1) is at least as restrictive as

W2(R, T2) if T1(r1, r2) ⊆ T2(r1, r2) for all r1, r2 ∈ R. In this initial formulation,

workflows are only comparable under ≤ if they have the same agent responsibilities.

Proposition 12 (Monotonicity). For all workflows W1 and W2, if W1 ≤ W2 and W2

achieves a privacy goal, then W1 also achieves the privacy goal.

The ordering ≤ is conservative in the sense that if two workflows are related by ≤,

then the smaller one discloses less information, but if two workflows are incomparable

under≤, one might still disclose less information. There does not appear to be a direct

connection between this ordering and utility goals because whether an agent has a

strategy to achieve a goal might be helped or hindered by strengthening the engine

responsibility.

Def. A workflow W is minimal for a utility goal if W achieves the utility goal and all

feasible workflows W ′ < W fail to achieve the utility goal (where W ′ < W if W ′ ≤ W

and W 6≤ W ′).

Minimal workflows provide the strongest privacy for a given utility goal, as advocated

by the principle of minimum necessary disclosure. For abstract worflows, minimal

workflows (as defined) fail to exist because the engine responsibility ϕ of a candidate

minimal workflow can always be strengthened by conjoining extraneous conditions.

This definition is useful because it provides a precise metric for evaluating workflow

designs, but other definitions are likely to have more desirable properties.

Proposition 13. Given a set of roles R, a responsibility for each role ϕR, and a set

of utility goals, there exists a graph-based workflow (ϕ, ϕR) that is minimal among

graph-based workflows.

A minimal graph-based workflow can be computed using brute force by iteratively

increasing the tags permitted on each edge of the workflow graph and testing whether

the workflow achieves utility.

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 63

5.3 Auditing Workflow Execution

In evaluating workflow designs, we consider only responsible executions of the work-

flow. In an actual deployment, agents can act irresponsibly, either out of malice or by

mistake, leading to policy violations. To hold agents accountable for these actions,

organizations should record communication in an audit log. In this section, we present

auditing algorithms for finding agents accountable for policy violations and for peri-

odically scanning the log for signs of irresponsible actions. These algorithms are not

fully automatic, but require an oracle that reports the actual contents of messages.

We seek to minimize the number of oracle calls because we expect the oracle to be im-

plemented by a human auditor. Additionally, we recommend the audit log maintain

the Lamport causality [43] relation between events to facilitate efficient auditing.

5.3.1 Policy Violations and Accountability

Whenever a safety property is violated, it is violated on a finite trace, but the agent

who performed the last action in that trace might not be blameworthy. For exam-

ple, HIPAA does not permit the publication of protected health information in a

newspaper, but HIPAA does not hold the reporter accountable for publishing the

information. Instead, the person in the hospital who leaked the information caused

the violation by acting irresponsibly and should be held accountable. Below, we make

this intuition precise by defining policy violation, causality, and accountability.

Policy Violations. To define when an action violates a policy, we employ the

notion of strong compliance [14]: an action is strongly compliant with a policy if there

exists a continued execution that satisfies the policy. Formally, given a finite past

history σ, an action a strongly complies with a policy θ, written a ∈ compliantθ(σ),

if there exists a trace σ′ such that σ · a · σ′ |= θ. We require of policies that agents

can determine whether their actions strongly comply with the policy. This ensures

that policy violations are visible to the agents violating the policy and prevents policy

compliance from depending on unrelated actions.

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 64

Def. A privacy policy θ has local compliance if, for all agents p and all traces π1, π2,

π1 � p = π2 � p implies compliantθ(π1) ∩ Ap = compliantθ(π2) ∩ Ap,

where Ap is the set of actions for which p is the sender.

Causality. Workflows do not define any explicit causal relation between messages.

For this reason, we resort to a standard trace-based notion of causality [43].

Def. The possibly-caused relation for a trace π, written π, is the minimal transitive

relation such that i π j if event i occurs before event j in the view π � p of some

agent p.

In a trace π, the set of causes of an event j is the set of events causesπ(j) = {i |
i π j}. The set of causes of an event is an over-approximation in the sense that

if an event i actually caused event j (under some non-trace-based notion of actual

causation, such as [45]), then i ∈ causesπ(j), but it is possible that i ∈ causesπ(j)

without i being an actual cause for j.

Accountability. An agent is accountable for policy violation i in a trace π if the

agent undertook an action in causesπ(i) and did not fulfill his or her responsibilities in

π. This definition is also an over-approximation because every agent whose irrespon-

sibility actually caused a policy violation is classified as accountable, but not every

accountable agent actually caused a policy violation.

Lemma 14 (Accountability). For all policies with local compliance, all graph-based

workflows achieving the privacy policy, and all traces π, if π contains an action that

violates the policy, then there exists an accountable agent.

Proof. Given a trace π with an action i undertaken by agent p that violates the

privacy policy, we construct a trace π̂ that contains only the causes of i. The events

π̂ form a trace because the actions available to each agent at a given time depend

only on the set of messages previously received by that agent, and all those events

are included in π̂. Moreover, π � p = π̂ � p because all the events in p’s view possibly

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 65

caused event i. Because the privacy policy has local compliance, i is also a violating

event in π̂, and there must exist an irresponsible agent q who undertook an action

that possibly caused the violation. Finally, q’s actions are also irresponsible in π and

q is an accountable agent.

5.3.2 Finding Accountable Agents

Our auditing algorithm for finding accountable agents in an audit log uses an oracle

O such that O(m) = contents(m) to determine whether an agent acted responsibly

by comparing the actual contents of messages with their tags. In practice, this ora-

cle can be implemented by a human auditor, possibly with the assistance of a text

classification algorithm.2 The algorithm is formulated as a search on the causality

graph of the audit log. The causality graph of a trace π is the graph with a node

for each event in π and with an edge from event i to event j iff (1) i π j and (2)

there is no event k with i π k and k π j. The causality graph can be constructed

mechanically because it does not depend on the contents of the messages. Moreover,

it can be constructed incrementally because actions are logged.

Algorithm 15. Given a policy violation i and an audit log π, let G be the causality

graph of π with the edges reversed. Beginning at i, perform a breath-first search of G.

Upon encountering an action Send(p, q,m), compare O(m) with tags(m). If p failed

to add a tag for which he or she was responsible, output p as an accountable agent

and terminate.

If the human auditor decides that the agent found by the algorithm did not actually

cause the policy violation, he or she can continue the search. The algorithm will

eventually enumerate all the accountable agents, one of whom must have actually

caused the policy violation.

2The University of Medicine & Dentistry of New Jersey determines whether to encrypt outgoing
messages by scanning the messages for keywords [68], essentially guessing the correct tags mechani-
cally.

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 66

Theorem 16 (Correctness). For every violation of a policy with local compliance in

an audit log of a graph-based workflow achieving the policy, the algorithm outputs an

accountable agent.

Proof. Lemma 14 guarantees the existence of an irresponsible agent who possibly

caused the policy violation. In graph-based workflows, irresponsible agents can be

recognized by comparing the actual contents of messages with the tags of the mes-

sages. The algorithm searches the events that possibly caused the violation for such

irresponsible tagging of messages.

The algorithm reduces the number of oracle calls by restricting the search to actions

that possibly caused the policy violation. In a deployment with thousands of agents

exchanging messages, the portion of the log examined is likely to be several orders of

magnitude smaller than the entire log, especially if an accountable agent is found at a

shallow depth in the causality graph. The algorithm can use fewer oracle calls (while

maintaining correctness) if the human auditor guides the search towards events that

appear to be more relevant to the policy violation. The search can also be directed

towards suspicious actions, a mechanical heuristic developed in the following section.

5.3.3 Monitoring for Irresponsible Actions

In addition to finding accountable agents after a policy violation occurs, auditing

can also prevent some policy violations by detecting irresponsible actions before they

lead to violations. The workflow engine can prevent irresponsible actions that can be

detected mechanically, but it cannot prevent all irresponsible actions. In this section,

we consider the problem of detecting irresponsible actions with the help of the oracle,

but while minimizing work done by the human auditor. The simplest approach to

detecting irresponsible actions in graph-based workflows is to sample communication

at random and check, using the oracle, whether the sending agent tagged the message

responsibly. This simple auditing algorithm requires many oracle calls to find a few

irresponsible actions if the vast majority of communications are tagged responsibly.

We suggest a more sophisticated approach based on a heuristic for suspicious actions.

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 67

Suspicious Events. Events appear suspicious if they indicate that some message

tags were incorrect. The auditing engine can track the knowledge state of each agent

as in Section 3.2.2, using the tags as a proxy for message contents:

κ
Send(p,q,m)−−−−−−→ κ[q 7→ cl�(κq ∪ tags(m))]

The set of available actions can also be modified to use tags:

availabletags
p (κ) = {τ} ∪ {Send(p, q,m) | tags(m) ⊆ κp}

These definitions are feasible for mechanical agents because they rely on message tags

instead of message contents. If messages were always tagged correctly, the knowledge

states computed from the tags would coincide with the real knowledge states and

every action undertaken by an agent would appear available from the tags. If some of

the tags are incorrect, however, the apparent knowledge states are unlikely to coincide

with the actual knowledge of agents. When agents undertake apparently unavailable

actions, those actions are suspicious.

Def. An action a by agent p is suspicious if a /∈ availabletags
p (κ), where κ is the

current knowledge state computed using message tags.

“Suspicious” is a heuristic. Irresponsible actions can lead to policy violations without

triggering suspicion, and suspicious actions can occur unrelated to any irresponsible

action. Suspicious actions do indicate related incorrect tags.

Proposition 17. For all audit logs π, if agent p undertakes a suspicious action, then

there exists a message in π � p with incorrect tags.

Proof. The actions available to an agent are determined by his or her view of a trace.

If an agent undertakes a suspicious action, then his actual knowledge differs from that

computed from tags and thus a tag must be incorrect.

Algorithm 18. Given a suspicious event i by agent p and an audit log π, consult

the oracle O about the message sent during i and the messages received by p before

CHAPTER 5. UTILITY AND BUSINESS PROCESSES 68

i in reverse chronological order until an incorrectly tagged message is found. If the

message was tagged irresponsibly, output the sending agent.

Chapter 6

Case Study: MyHealth@Vanderbilt

In this chapter, we illustrate the formal concepts developed in the preceding chapters

using the MyHealth@Vanderbilt patient portal. Based on this formal analysis, we

make several concrete design recommendations to the MyHealth developers. Specif-

ically, we recommend introducing tags into the system and modifying the workflow

to route health questions directly to nurses. Portions of this chapter appear in [15].

6.1 Overview

The MyHealth patient portal at Vanderbilt University Hospital allows patients to

interact with their doctors and other healthcare professionals through a web-based

messaging system (see https://www.myhealthatvanderbilt.com/). This innovative

system at a leading research hospital, like related commercial ventures elsewhere, aims

to provide better medical care at reduced costs, in a way that is more convenient to

patients. In the MyHealth system, patients ask health questions and receive answers

by exchanging messages with their doctors, labs send test results to patients, and

patients send appointment requests to secretaries. Although HIPAA forbids some

email communication with patients, the portal’s patient authentication mechanism

lets web-based messaging systems comply with HIPAA. The graph below depicts a

portion of the MyHealth message passing system that deals with appointment requests

and health questions.

69

CHAPTER 6. CASE STUDY: MYHEALTH@VANDERBILT 70

Patient

Secretary

Nurse DoctorAll Messages

Heath Question

Health Question

Appt Confirm

Health Answer

Health Answer

1

This portion of MyHealth serves two utility goals: patients can schedule appointments

and can receive answers to health questions. All messages are directed to the secre-

tary, who is responsible for scheduling appointments and forwarding health questions

to the nurse. This design reduces the doctor’s workload, but the secretary learns

the patient’s sensitive health information contained in health questions. A more pri-

vacy conscious MyHealth design would deliver health questions directly to the nurse,

bypassing the secretary. However, patients write messages in free text, making it

difficult for MyHealth to route health questions to nurses and appointment requests

to secretaries. We suggest permitting patients to tag messages with their contents

using a simple drop-down control on the portal, enabling MyHealth to route message

according to their tag. The graph below depicts our proposed tag-based workflow for

MyHealth.

Patient

Secretary

Nurse DoctorAppt Request

Health Question

Heath Question

Appt Request

Health Question

Appt Confirm

Health Answer

Health Answer

1

Our initial workflow proposal did not permit communication between the secretary

and the nurse, but that workflow failed to achieve a utility goal. Vanderbilt employees

would have been unable to answer health questions if a patient mistakenly tagged a

health question as an appointment request as the secretary would be unable to correct

the tag and forward the question to the nurse.

CHAPTER 6. CASE STUDY: MYHEALTH@VANDERBILT 71

6.2 Workflow

6.2.1 Roles and Attributes

MyHealth is a graph-based workflow with roles patient , secretary , nurse, and doctor

and attributes appt-request , appt-confirm, health-question, and health-answer .

R = {patient , secretary , nurse, doctor}

T = {appt-request , appt-confirm, health-question, health-answer}

There are two subsumption relations between attributes, enabling health answers to

be computed from health questions and appointment confirmations to be computed

from appointment requests.

health-answer � health-question appt-confirm � appt-request

In the initial knowledge state, patients know their own health-question and appt-request ,

and no other attributes are known.

6.2.2 Graph

The edges of the workflow graph are labeled as depicted in Section 6.1. For example,

the edges emanating from the nurse to the other roles are labeled as follows:

Tsecretary ,patient = {appt-confirm} Tpatient ,secretary = {appt-request}

Tnurse ,patient = {health-answer} Tnurse ,secretary = {appt-request}

Tdoctor ,patient = {health-answer} Tdoctor ,secretary = ∅

Tpatient ,nurse = {health-question} Tpatient ,doctor = ∅

Tsecretary ,nurse = {health-question} Tsecretary ,doctor = {appt-confirm}

Tdoctor ,nurse = ∅ Tnurse ,doctor = {health-question}

CHAPTER 6. CASE STUDY: MYHEALTH@VANDERBILT 72

6.2.3 Responsibilities

MyHealth has several progress responsibilities.

Secretary. Secretaries are responsible for confirming appointments and for forward-

ing health questions to nurses. Note that although the workflow graph does not de-

liver to secretaries messages tagged as containing health questions, secretaries might

receive health questions that are mistagged as containing appointment requests.

G∀p, q,m. send(p, x,m) ∧ contains(m, q, appt-request)→

F∃m′. contains(m′, q, appt-confirm) ∧ send(x, q,m′)

G∀p, q,m. send(p, x,m) ∧ contains(m, q, health-question)→

F∃n. inrole(n, nurse) ∧ send(x, n,m)

Nurse. Nurses are responsible for either answering or forwarding health questions,

for sending misdirected appointment requests to the secretary, and for sending health

answers only to the appropriate patient.

G∀p1, q,m. send(p1, x,m) ∧ contains(m, q, health-question)→

F(∃d. inrole(d, doctor) ∧ send(x, d,m))∨

(∃m′. contains(m′, q, health-answer) ∧ send(x, q,m′))

G∀p, q,m. send(p, x,m) ∧ contains(m, q, appt-request)→

F∃s. inrole(s, secretary) ∧ send(x, s,m)

Gp, q,m. send(x, p,m) ∧ contains(m, q, health-answer)→ p = q

CHAPTER 6. CASE STUDY: MYHEALTH@VANDERBILT 73

Doctor. Doctors are responsible for answering health questions they receive.

G∀p, q,m. send(p, x,m) ∧ contains(m, q, health-question)→

F∃m′. contains(m, q, health-answer) ∧ send(x, q,m′)

Gp, q,m. send(x, p,m)∧

(contains(m, q, health-question) ∨ contains(m, q, health-answer))→ p = q

6.3 Evaluation

Privacy. The salient privacy goal of MyHealth is to comply with HIPAA. Many

of the requirements of the HIPAA Privacy Rule can be expressed in the logic. For

simplicity, we consider two specific requirements: only health care providers receive

protected health information and patients receive only their own health answers.

G∀p1, p2, q,m. send(p1, p2,m) ∧ contains(q, health-question)→

inrole(p2, nurse) ∨ inrole(p2, doctor)

G∀p1, p2, q,m. send(p1, p2,m) ∧ inrole(p2, patient)∧

contains(m, q, health-answer)→ q = p2

The proposed MyHealth workflow achieves both of these privacy goals, but the current

workflow does not achieve the first. Although these properties are easy to check for

this simple workflow, we could have used the algorithm in Section 5.2.1.

Utility. Two utility goals of MyHealth are that patients can schedule appointments

and receive answers to their health questions. We state these goals in terms of the

existence of strategies.

CHAPTER 6. CASE STUDY: MYHEALTH@VANDERBILT 74

∀p. inrole(p, patient)→ 〈〈p〉〉F∃q,m. send(q, p,m) ∧ contains(m, p, health-answer)

∀p. inrole(p, patient)→ 〈〈p〉〉F∃q,m. send(q, p,m) ∧ contains(m, p, appt-confirm)

MyHealth does achieve these utility goals. Another utility goal is worth analyzing

because some of the patients who use MyHealth might not be technically savvy. The

nurse and doctor have a strategy for reacting to health questions sent by patients

with health answers, even if the patient incorrectly tags his or her health question

and it is directed to the secretary. MyHealth without patient responsibilities achieves

this privacy goal, but a variant of the workflow that does not include edges between

the secretary and the nurse does not achieve this utility goal.

∀s, n, d. inrole(s, secretary) ∧ inrole(n, nurse) ∧ inrole(d, doctor)→

〈〈s, n, d〉〉G∀p, x,m. inrole(p, patient) ∧ ((x = s) ∨ (x = n) ∨ (x = d))∧

send(p, x,m) ∧ contains(m, p, health-question)→

F∃m′. contains(m′, p, health-answer)∧

(send(n, p,m′) ∨ (send(d, p,m′))

Auditing. We illustrate the auditing algorithms on an example trace π that vio-

lates MyHealth’s privacy goals. Suppose Alice, a secretary, received a health answer

intended for a patient. Alice received the message because it was sent by Bob, an-

other secretary, and tagged as an appointment request. Tracing backwards through

the causality structure, the auditing algorithm queries the human auditor for the

contents of several messages sent to Bob until it find an irresponsible message sent

by Carol, a nurse. Carol sent the health answer to Bob irresponsibly tagged as an

appointment request and can be held accountable for this action. Moreover, this

irresponsible action is likely to be found by monitoring because it is suspicious: Bob

had not previously received a message tagged as an appointment request.

Chapter 7

Conclusion

Privacy and regulatory compliance are important business and social concerns. Ex-

isting laws and societal expectations are complex and difficult for modern enterprises

to understand and manage. We believe there is a need for a general, clear, and

comprehensive framework for reducing high-level requirements to specific operating

guidelines that can be applied at individual steps in a business process or organiza-

tional workflow.

Privacy policies concern the use and disclosure of personal information. An in-

dividual’s personal information is structured in that knowledge of some attributes,

such as postal address, contain information about other attributes, such as postal

code. In the extreme case, an agent who knows the value of one attribute can exactly

determine the value of another attribute. This relation between attributes, known

as the data hierarchy, complicates privacy languages because statements about one

attribute have consequences for the use and disclosure of other attributes.

Existing policy languages, such as P3P and EPAL, contain semantic anomalies

arising from the interrelation of personal attributes. In P3P, these anomalies take

the form of not guaranteeing that a consumer’s privacy preferences, expressed in

either APPEL or XPref, will be respected if a service provider lives up to its P3P

policy. Preference authors can work around these anomalies by using only monotonic

preferences, i.e., those preferences that are free of negation.

75

CHAPTER 7. CONCLUSION 76

EPAL also contains semantic anomalies related to the data hierarchy. These

anomalies give rise to unsafe policies that impose fewer restrictions on more generic

actions. These policies are anomalous because they let a member of the enterprise

avoid policy obligations by phrasing his or her policy query in more general terms.

Complications introduced by the data hierarchy also prevent EPAL from being closed

under combination. Given two EPAL policies, there might not exist a third EPAL

policy that enforces their conjunction.

Although these semantic anomalies can be repaired via involved lattice construc-

tions [16], the complexities arising from the data hierarchy can be more cleanly dealt

with by improving the foundations of privacy languages. Instead of reasoning about

the inheritance of policy statements (as in [12]), we suggest reasoning about the de-

ductive power of agents. We model the knowledge state of agents and then update

their knowledge as state they receive messages from other agents. By requiring that

the messages exchanged between agents are downwardly closed under the data hier-

archy relation, we are able to cleanly avoid the semantic anomalies that plague other

privacy languages.

Our model is inspired by contextual integrity, a conceptual framework for under-

standing privacy expectations that has been developed in the literature on law and

public policy. Contextual integrity holds that whether a communication is appro-

priate (meets societal expectations about privacy) depends on the context, the role,

and the subject of personal information, and cannot be captured accurately using a

DRM-style “ownership of information” model or a simple partitioning of information

into “public information” and “private information.”

By articulating these features in the model, the logic of privacy and utility we

develop formalizes the central ideas of contextual integrity in a well-studied temporal

logic. Privacy norms are expressed in the Linear-time Temporal Logic (LTL) frag-

ment, which is interpreted over traces of basic communication actions of the form

“Alice gives Bob a particular type of information about Carol.” The temporal oper-

ators in the logic correspond to “principles of transmission” in contextual integrity.

For example, if Alice sends information to Bob under the principle of confidentiality,

then, in the future, Bob must refrain from sending that information to a third party.

CHAPTER 7. CONCLUSION 77

The temporal operators are also useful for capturing provisions in privacy policies

that refer to the past (for example, that the subject opted in to a particular kind of

communication) or to the future (for example, that the subject must be notified that

the communication occurred).

It is difficult to evaluate a privacy language (or, more generally, a policy language)

scientifically. To evaluate the privacy fragment of the logic of privacy and utility, we

present algorithms for checking policy consistency, combining policies, and enforc-

ing compliance. Unlike in previous privacy languages, these algorithmic problems

reduce to well-studied problems in temporal logic, letting us leverage a large body of

prior work. Policy consistency amounts to satisfiability. Policy combination, which

is problematic in EPAL, is formulated easily using logical conjunction and disjunc-

tion. Enforcing compliance is subtle, distilling into two notions: weak and strong

compliance. Weak compliance is computable in polynomial time per action but guar-

antees only that an action meets all present requirements (future obligations might be

impossible to satisfy). Strong compliance requires polynomial space but guarantees

that the agents can discharge their future requirements. In most policies we have

examined, weak compliance is sufficient because the future requirements entailed by

the policy are always possible to discharge.

We also evaluate our privacy language by comparing its expressiveness with that

of existing privacy and policy languages. Specifically, we compare expressiveness

with RBAC, XACML, EPAL, and P3P. Our results are summarized in Fig. 4.1. Our

language is roughly a superset of these other languages, with a number of subtle

exceptions. For example, XACML lets policies invoke arbitrary programs during

policy evaluation, engendering expressiveness not available in our language. Our

temporal conditions improve on the uninterpreted future obligations of XACML and

EPAL by letting our algorithms for policy combination and compliance reason directly

about these obligations.

Finally, we evaluate the privacy language by trying to express privacy provisions

of federal regulations including HIPAA, COPPA, and GLBA. We find that we are able

to express the main privacy provisions of these regulations and that the regulations

exercise all the features of our language. Some regulations, such as HIPAA, consist

CHAPTER 7. CONCLUSION 78

mostly of positive norms, enumerating the allowed communications and forbidding

all other communication. Other regulations, such as COPPA and GLBA, consist

mostly of negative norms, forbidding some kinds of communication or imposing obli-

gations whenever other kinds of communication occur. The different senses of these

requirements are captured accurately in the logic.

The formalized regulations in Section 4.3 are useful for evaluating the expres-

siveness of the logic of privacy and utility, but they are not complete enough to be

used to enforce compliance with the regulation. Creating a complete formalization

of the privacy provisions of a regulation is a significant undertaking. We have made

some amount of progress formalizing the HIPAA Privacy Rule in a Horn fragment of

the logic [65]. One significant challenge in this work is providing assurance that our

translation accurately captures the semantics of the regulation.

There are a number of directions for expanding the privacy language by extend-

ing the logic. For example, our model assumes that policies are based only on the

type of information (rather than actual data values) and that information is about

a single individual (rather than about a group of individuals). We could extend the

formalization by relaxing these restrictions, letting policies depend on specific data

values and letting information describe groups of individuals.

Our current language faces a limitation common to many policy languages. Con-

sider SB 1386, a California law requiring businesses that inappropriately disclose per-

sonal information to notify the subjects of the information. This provision cannot be

expressed properly in the language because it takes effect only when an agent violates

a policy. In our model, an agent either does or does not comply with a privacy policy.

In either case, the agent need not send notifications. However, Californians receive

such notifications regularly. To express such “defense in depth” provisions, we could

extend our logic with a modality as in deontic logic [?]. Unfortunately, the known

deontic logics suffer semantic anomalies with such “contrary-to-duty” imperatives [?].

One extension that we have investigated in detail is extending the privacy language

to include notions of utility. Utility differs from privacy in that utility is not a trace-

based property. A given workflow or business process is useful in virtue of its possible

executions. For example, a patient health portal is useful for answering the health

CHAPTER 7. CONCLUSION 79

questions of patients if those patients can get their health questions answered—even

if no patients actually ask any questions in a given trace. To accurately capture this

notion of utility, we expand the logic beyond simple linear-time to Alternating-time

Temporal Logic (ATL). The ATL strategy quantifier lets us reason about what an

agent (or a coalition of agents) can accomplish in a workflow.

Our unified model of agents interacting via a concurrent game structure to execute

a workflow lets us examine questions that concern both privacy and utility. For

example, this model is expressive enough to capture privacy requirements such as

“minimal necessary,” which refers to maximizing privacy while maintaining some fixed

amount of utility. The authors of these provisions seem to view privacy and utility

as directly in tension: tightening restrictions on data disclosure enhances privacy at

the expense of utility. This view is not substantiated in our model. In fact, there are

examples in which both privacy and utility are enhanced by adding more restrictions

on information disclosure. These situations occur when restricting the actions of one

agent creates utility for another agent because that agent now has a strategy for

bringing about some useful end.

We also distinguish between information visible to mechanical agents and to hu-

man agents. Specifically, we assume messages have explicit tags that can be read by

mechanical agents, but we do not assume that these tags match the actual semantic

contents of messages. This distinction is useful in separating those enforcement tasks

that can be carried out by electronic systems from those tasks that require human

agents. We assume that electronic agents are online and can monitor and restrict

communication to the best of their abilities but that human enforcement agents par-

ticipate only after-the-fact, as auditors. By structuring the model in this way, we can

examine algorithms for design-time privacy and utility analysis of workflows as well

as algorithms for run-time auditing of workflow execution.

The design-time privacy analysis applies the general algorithms for our privacy

language to the specific case of comparing a privacy policy with a workflow design, as

represented by a set of responsibilities for each agent in the workflow. We say that a

workflow achieves its privacy goals if the agents satisfy the privacy policy when they

all live up to their responsibilities. The design-time utility analysis requires a sound

CHAPTER 7. CONCLUSION 80

approximation algorithm to overcome an undecidability result about ATL* model

checking with imperfect information. We then use this algorithm to evaluate whether

responsible agents satisfy the utility goals of the workflow.

At run-time, agents might not fulfill their responsibilities, leading to privacy vio-

lations. One strategy for dealing with these breaches is to perform regular audits and

hold individuals accountable for their actions. To be held accountable for a privacy

breach, however, an agent not only must have been derelict in his or her responsi-

bilities but also must have caused the privacy violation. Conversely, simply having

caused a privacy breach is not, in and of itself, enough grounds for holding an agent

accountable for the breach. To be held accountable, that agent must also have been

responsible for preventing the breach.

To make precise the notion of causation, we appeal to the classic definition of

Lamport causality in distributed systems. Using this definition, we develop auditing

algorithms for using an audit log to find an agent to hold accountable for a privacy

violation. These algorithms make use of a human auditor to uncover the semantic

contents of messages. We evaluate the efficiency of these algorithms by asking that

the algorithms economize their use of the human auditor, modeled as an oracle. These

algorithms are practical and efficient but unlikely to be the final word on the auditing

problem. We plan to investigate this problem further in subsequent work, specif-

ically exploring fully automated auditing techniques with reasonable false positive

and false negative rates and developing (semi-)automated techniques for identifying

policy violations by analyzing audit logs.

We apply these methods to analyze the design of MyHealth@Vanderbilt, a pa-

tient portal deployed at Vanderbilt Medical Center. Our analysis leads to concrete

suggestions for improving the privacy and utility of the workflow. We believe that

the methods in this thesis are applicable to systems in a wide range of sectors in-

cluding health care and financial services, where business processes routinely handle

personal information and privacy and utility concerns are significant. In subsequent

work, we hope to carry out case studies of other health care systems using automated

tools. Another application area we hope to investigate is the outsourcing of business

processes that deal with sensitive information such as social security and credit card

CHAPTER 7. CONCLUSION 81

numbers. In this setting, minimal workflows are particularly useful for tasks such as

credit card charge-back that require access to real credit card numbers.

While it is unreasonable to expect the manager of a hospital, call center, or credit

card processing organization to become fluent in temporal logic, we believe that the

most productive way to address the basic problem is to develop precise, unambiguous

foundations and use them to develop more accessible principles and guidelines.

Bibliography

[1] Mark S. Ackerman, Lorrie Faith Cranor, and Joseph Reagle. Privacy in e-

commerce: Examining user scenarios and privacy preferences. In Proceedings

of the 1st ACM Conference on Electronic Commerce, pages 1–8. ACM Press,

1999.

[2] Nabil R. Adam, Vijayalakshmi Atluri, and Wei-Kuang Huang. Modeling and

analysis of workflows using petri nets. J. Intell. Inf. Syst., 10(2):131–158, 1998.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. An

XPath-based preference language for P3P. In Proceedings of the Twelfth Inter-

national Conference on World Wide Web, pages 629–639. ACM Press, 2003.

[4] Rakesh Agrawal, Ramakrishnan Srikant, and Dilys Thomas. Privacy preserving

OLAP. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, pages 251–262, New York, NY, USA, 2005.

ACM Press.

[5] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time

temporal logic. J. ACM, 49(5):672–713, 2002.

[6] Anne Anderson. Key differences between XACML and EPAL. Ottawa new

challenges for access control, 2005.

[7] Anne Anderson, Anthony Nadalin, Bill Parducci, Daniel Engovatov, Ed Coyne,

Frank Siebenlist, Hal Lockhart, Michael McIntosh, Michiharu Kudo, Polar Hu-

menn, Ron Jacobson, Seth Proctor, Simon Godik, Steve Anderson, and Tim

Moses. Extensible access control markup language (XACML) version 2.0, 2004.

82

BIBLIOGRAPHY 83

[8] Annie I. Antón, Julia Brande Earp, and Angela Reese. Analyzing website privacy

requirements using a privacy goal taxonomy. In Requirements Engineering 2002,

pages 23–31, 2002.

[9] Annie I. Antón, Qingfeng He, and David L. Baumer. Inside JetBlue’s privacy

policy violations. IEEE Security and Privacy, 2(6):12–18, 2004.

[10] Vijayalakshmi Atluri and Wei-Kuang Huang. An authorization model for work-

flows. In European Symposium on Research in Computer Security (ESORICS),

volume 1146 of LNCS, pages 44–64. Springer–Verlag, 1996.

[11] M. Backes, B. Pfitzmann, and M. Schunter. A toolkit for managing enterprise

privacy policies. In European Symposium on Research in Computer Security

(ESORICS), volume 2808 of LNCS, pages 101–119. Springer–Verlag, 2003.

[12] Michael Backes, Markus Dürmuth, and Rainer Steinwandt. An algebra for com-

posing enterprise privacy policies. In European Symposium on Research in Com-

puter Security (ESORICS), volume 3193 of LNCS. Springer–Verlag, 2004.

[13] Michael Backes, Günter Karjoth, Walid Bagga, and Matthias Schunter. Effi-

cient comparison of enterprise privacy policies. In Proceedings of the 2004 ACM

Symposium on Applied Computing, pages 375–382. ACM Press, 2004.

[14] Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. Privacy

and contextual integrity: Framework and applications. In SP ’06: Proceedings of

the 2006 IEEE Symposium on Security and Privacy, pages 184–198, Washington,

DC, USA, 2006. IEEE Computer Society.

[15] Adam Barth, Anupam Datta, John C. Mitchell, and Sharada Sundaram. Pri-

vacy and utility in business processes. In IEEE Computer Security Foundations

Symposium, pages 279–294. IEEE Computer Society, July 2007.

[16] Adam Barth and John C. Mitchell. Enterprise privacy promises and enforcement.

In Workshop on Issues in the Theory of Security, pages 58–66. ACM Press, 2005.

BIBLIOGRAPHY 84

[17] Adam Barth, John C. Mitchell, and Justin Rosenstein. Conflict and combination

in privacy policy languages. In Proceedings of the 2004 Workshop on Privacy in

the Electronic Society. ACM Press, 2004.

[18] Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management,

applied to electronic health records. In IEEE Computer Security Foundations

Workshop. IEEE Computer Society, 2004.

[19] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foun-

dations and model. Technical Report M74-244, Mitre Corp, 1975.

[20] Matt Bishop. Computer Security: Art and Science. Addison Wesley Professional,

2003.

[21] Simon Byers, Lorrie Faith Cranor, and David Kormann. Automated analysis of

P3P-enabled web sites. In Proceedings of the 5th International Conference on

Electronic Commerce, pages 326–338. ACM Press, 2003.

[22] Shuchi Chawla, Cynthia Dwork, Frank McSherry, Adam Smith, and Hoeteck

Wee. Toward privacy in public databases. In TCC ’5: Proceedings of the Sec-

ond Theory of Cryptography Conference, volume 3378 of LNCS, pages 363–385.

Springer–Verlag, 2005.

[23] James Clark and Steve DeRose. XML path language (XPath), 1999.

http://www.w3.org/TR/xpath.

[24] CNN. FBI seeks stolen personal data on 26 million vets.

http://www.cnn.com/2006/US/05/22/vets.data/.

[25] Jason Crampton. On permissions, inheritance and role hierarchies. In Proceedings

of the 10th ACM Conference on Computer and Communication Security, pages

85–92. ACM Press, 2003.

[26] Lorrie Faith Cranor. Web Privacy with P3P. O’Reilly and Associates, Inc., 2002.

BIBLIOGRAPHY 85

[27] Lorrie Faith Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-

Marshall, and Joseph Reagle. The platform for privacy preferences 1.0 (P3P1.0)

specification. http://www.w3.org/TR/P3P/, 2002.

[28] CSO Online. Safety in numbers.

http://www.csoonline.com/metrics/viewmetric.cfm?id=265.

[29] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The

ponder policy specification language. In POLICY ’01: Proceedings of the In-

ternational Workshop on Policies for Distributed Systems and Networks, pages

18–38, London, UK, 2001. Springer–Verlag.

[30] Stéphane Demri and Philippe Schnoebelen. The complexity of propositional lin-

ear temporal logics in simple cases. In Procceding of the 15th Annual Symposium

on Theoretical Aspects of Computer Science (STACS’98), volume 1373 of LNCS.

Springer–Verlag, 1998.

[31] John DeTreville. Binder, a logic-based security language. In SP ’02: Proceedings

of the 2002 IEEE Symposium on Security and Privacy, page 105, Washington,

DC, USA, 2002. IEEE Computer Society.

[32] Marlon Dumas and Arthur H. M. ter Hofstede. UML activity diagrams as a

workflow specification language. In UML 2001, pages 76–90. Springer–Verlag,

2001.

[33] Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically

partitioned databases. In CRYPTO 2004: 24th Annual International Cryptology

Conference, volume 3152 of LNCS, pages 528–544. Springer–Verlag, 2004.

[34] EPIC. The Gramm–Leach–Bliley Act. http://epic.org/privacy/glba/.

[35] Federal Trade Commission. How to comply with the children’s online privacy pro-

tection rule. http://www.ftc.gov/bcp/conline/pubs/buspubs/coppa.htm,

1999.

BIBLIOGRAPHY 86

[36] Federal Trade Commission. In brief: the financial privacy requirements

of the Gramm–Leach–Bliley Act. http://www.ftc.gov/bcp/conline/pubs/

buspubs/glbshort.htm, 2002.

[37] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison Wesley Professional, 2004.

[38] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahma-

nian. Flexible support for multiple access control policies. ACM Trans. Database

Syst., 26(2):214–260, 2001.

[39] Wojciech Jamroga, Wiebe van der Hoek, and Michael Wooldridge. On obligations

and abilities. In Deontic Logic: 7th International Workshop on Deontic Logic in

Computer Science, volume 3065 of LNCS, pages 165–181. Springer–Verlag, 2004.

[40] Carlos Jensen and Colin Potts. Privacy policies as decision-making tools: An

evaluation of online privacy notices. In Proceedings of the 2004 Conference on

Human Factors in Computing Systems, pages 471–478. ACM Press, 2004.

[41] Günter Karjoth and Matthias Schunter. A privacy policy model for enterprises.

In IEEE Computer Security Foundations Workshop, page 271. IEEE Computer

Society, 2002.

[42] Krishnaram Kenthapadi, Nina Mishra, and Kobbi Nissim. Simulatable auditing.

In PODS ’05: Proceedings of the 24th ACM Symposium on Principles of Database

Systems, pages 118–127, New York, NY, USA, 2005. ACM Press.

[43] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978.

[44] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt.

Limiting disclosure in hippocratic databases. In 30th International Conference

on Very Large Data Bases, Toronto, Canada, August 2004.

[45] David Lewis. Causation as influence. The Journal of Philosophy, 97(4):181–197,

2000.

BIBLIOGRAPHY 87

[46] Ninghui Li and John C. Mitchell. RT: A role-based trust-management frame-

work. In The Third DARPA Information Survivability Conference and Exposi-

tion, pages 201–212, Washington, DC, USA, 2003. IEEE Computer Society.

[47] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakr-

ishnan Venkitasubramaniam. l-Diversity: Privacy beyond k-anonymity. ACM

Transactions on Knowledge Discovery from Data, 1(1), 2007.

[48] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems:

Safety. Springer–Verlag, 1995.

[49] Markle Foundation. The Connecting for Health Common Framework. http:

//www.connectingforhealth.org/commonframework/, 2006.

[50] Michael J. May, Carl A. Günter, and Insup Lee. Privacy apis: Access control

techniques to analyze and verify legal privacy policies. In IEEE Workshop on

Computer Security Foundations, pages 85–97. IEEE Computer Society, 2006.

[51] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large

sparse datasets. In SP ’08: Proceedings of the 2008 IEEE Symposium on Secu-

rity and Privacy, pages 111–125, Washington, DC, USA, 2008. IEEE Computer

Society.

[52] Helen Nissenbaum. Privacy as contextual integrity. Washington Law Review,

79(1):119–158, 2004.

[53] OASIS. OASIS Web Services Process Execution Language (WSBPEL). http:

//www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.

[54] Office for Civil Rights. Summary of the HIPAA privacy rule. US Department of

Health & Human Services, 2003.

[55] Oracle. Oracle BPEL Process Manager.

http://www.oracle.com/technology/products/ias/bpel/.

BIBLIOGRAPHY 88

[56] J.E.J. Prins. The propertization of personal data and identities. Electronic

Journal of Comparative Law, 8.3, October 2004.

[57] James Rachels. Why privacy is important. In Ferdinand David Schoeman, editor,

Philosophical Dimensions of Privacy: An Anthology, pages 290–294. 1984.

[58] Joseph Reagle and Lorrie Faith Cranor. The platform for privacy preferences.

Communications of the ACM, 42(2):48–55, 1999.

[59] Grigore Rosu and Klaus Havelund. Synthesizing dynamic programming algo-

rithms for linear temporal logic formulae. Technical Report TR 01-15, RIACS,

May 2001.

[60] Pierangela Samarati. Protecting respondent’s privacy in microdata release. IEEE

Transactions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

[61] Ferdinand Schoeman. Privacy and intimate information. In Ferdinand David

Schoeman, editor, Philosophical Dimensions of Privacy: An Anthology, pages

403–408. 1984.

[62] Ferdinand Schoeman. Gossip and privacy. In Robert F. Goodman and Aaron

Ben-Zeev, editors, Good Gossip, pages 403–408. 1994.

[63] Matthias Schunter, Paul Ashley, Satoshi Hada, Günter Karjoth, Calvin

Powers, and Matthias Schunter. Enterprise privacy authorization language

(EPAL 1.1). http://www.zurich.ibm.com/security/enterprise-privacy/

epal/Specification/, 2003.

[64] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear

temporal logics. Journal of the ACM, 32(3):733–749, July 1985.

[65] Sharada Sundaram, Anjali Behal, and Adam Barth. HIPAA compliance checker.

http://hipaa.googlecode.com/, 2008.

[66] Latanya Sweeney. k-Anonymity: A model for protecting privacy. International

Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570,

2002.

BIBLIOGRAPHY 89

[67] Wouter Teepe, Reind P. van de Riet, and Martin S. Olivier. Workflow analyzed

for security and privacy in using databases. In Working Conference on Database

Security, pages 271–282. Kluwer, B.V., 2001.

[68] University of Medicine & Dentistry of New Jersey. HIPAA Security Standards

FAQ’s.

http://www2.umdnj.edu/hipaaweb/security/security_emailFAQ02.htm,

2007.

[69] Vanderbilt Medical Center. MyHealthAtVanderbilt.

https://www.myhealthatvanderbilt.com/, 2007.

